Difference between revisions of "Programming Tips"

From OpenCircuits
Jump to navigation Jump to search
(→‎Auto baud rate detection: Is this more specific page a better link?)
(driver development for dspic33)
Line 1: Line 1:
 +
This wiki describes an example coding of the freertos_posix driver for the [[DsPIC30F 5011 Development Board | dsPic33 development board]]. Please refer to the actual coding used from [http://chungyan5.no-ip.org/vc/?root=freertos_posix here].
  
 +
==Memory==
  
Some programming tips for the [[DsPIC30F 5011 Development Board]]:
+
===Memory Map for dsPIC33FJ256GP506===
 
 
==Memory Map for 5011==
 
 
{| border="1" cellspacing="0" cellpadding="5"
 
{| border="1" cellspacing="0" cellpadding="5"
|+ Table 6.1 Memory Location
+
|+ Table 11.1 Memory Location
 
! Type !! Start Address !! End Address !! Size
 
! Type !! Start Address !! End Address !! Size
 
|-valign="top"
 
|-valign="top"
| Flash || 0x000000 ||0x00AFFF || 44K<sup>[1]</sup>
+
| Flash || 0x000000 ||0x0157FF || 86K<sup>[1]</sup>
 
|-valign="top"
 
|-valign="top"
 
| +--Flash: Reset Vector || 0x000000 ||0x000003 || 4
 
| +--Flash: Reset Vector || 0x000000 ||0x000003 || 4
 
|-valign="top"
 
|-valign="top"
| +--Flash: Interrupt Vector Table || 0x000004 ||0x00007F || 124
+
| +--Flash: Interrupt Vector Table || 0x000004 ||0x0000FF || 252
|-valign="top"
 
| +--Flash: Alternate Vector Table || 0x000084 ||0x0000FF || 124
 
|-valign="top"
 
| +--Flash: User Program || 0x000100 ||0x00AFFF || 43.7K
 
 
|-valign="top"
 
|-valign="top"
| EEPROM || 0x7FFC00 || 0x7FFFFF || 1K<sup>[2]</sup>
+
| +--Flash: Alternate Vector Table || 0x000104 ||0x0001FF || 252
 
|-valign="top"
 
|-valign="top"
| Programming Executive || 0x800000 || 0x8005BF || 1472
+
| +--Flash: User Program || 0x000200 ||0x0157FF || 85.5K
 
|-valign="top"
 
|-valign="top"
| Unit ID || 0x8005C0 || 0x8005FF || 64
+
| Programming Executive || 0x800000 || 0x800FFF || 4K<sup>[1]</sup>
 
|-valign="top"
 
|-valign="top"
| Config  Registers || 0xF80000 || 0xF8000F || 16
+
| Config  Registers || 0xF80000 || 0xF80017 || 24
 
|-valign="top"
 
|-valign="top"
| Device ID || 0xFF0000 || 0xFF0003 || 4
+
| Device ID (0xE5) || 0xFF0000 || 0xFF0003 || 4
 
|-
 
|-
 
|}
 
|}
 
[1] Each address is 16-bit wide. Every two addresses correspond to a 24-bit instruction. Each even address contains 2 valid bytes; each odd address contains 1 valid byte plus 1 phathom byte.<br>
 
[1] Each address is 16-bit wide. Every two addresses correspond to a 24-bit instruction. Each even address contains 2 valid bytes; each odd address contains 1 valid byte plus 1 phathom byte.<br>
[2] Each address is 8-bit wide.
 
  
  
==Data Location==
+
===Data Location===
 
{| border="1" cellspacing="0" cellpadding="5"
 
{| border="1" cellspacing="0" cellpadding="5"
|+ Table 6.2 Data Location
+
|+
 
! Type !! Description !! Example
 
! Type !! Description !! Example
 
|-valign="top"
 
|-valign="top"
Line 82: Line 77:
 
| int _NEAR var1, var2;
 
| int _NEAR var1, var2;
 
|-valign="top"
 
|-valign="top"
| _ISR
+
| __attribute__((__interrupt__))
 
| Interrupt service rountine
 
| Interrupt service rountine
| void _ISR _INT0Interrupt(void);
+
| void __attribute__((__interrupt__)) _INT0Interrupt(void);
 
|-valign="top"
 
|-valign="top"
 
| _ISRFAST
 
| _ISRFAST
Line 94: Line 89:
  
  
==Configuration Bits==
+
===<asm/types.h>===
 +
*The following maps the basic data types:
 +
  typedef unsigned char          __u8;
 +
  typedef char                    __s8;
 +
  typedef unsigned int            __u16;
 +
  typedef int                    __s16;
 +
  typedef unsigned long          __u32;
 +
  typedef long                    __s32;
 +
  typedef unsigned long long      __u64;
 +
  typedef long long              __s64;
 +
 
 +
  //to be used in <time.h>
 +
  typedef unsigned long          time_t;
 +
*The following macros are the platform-dependent
 +
  /** Interrupt Request */
 +
  #define _IRQ                    __attribute__((__interrupt__))
 +
  /** TRAP IRQ for saving program counter: declare __u16 StkAddrLo, StkAddrHi in trap.c (order matters) */
 +
  #define _TRAP_IRQ              __attribute__((__interrupt__(__preprologue__( \
 +
                                  "mov #_StkAddrHi,w1\n\tpop [w1--]\n\tpop [w1++]\n\tpush [w1--]\n\tpush [w1++]"))))
 +
  /** IO Stub Functions are placed in .libc section so that the standard libraries can access these functions using short jumps. */
 +
  #define _LIBC                  __attribute__((section(".libc")))
 +
  /** FAST RAM */
 +
  #define _DMA                    __attribute__((space(dma),aligned(256)))
 +
 
 +
 
 +
===Custom Linker Script to Maximize Space for Constant Data===
 +
*Constant data declared using keyword '''const''' will be stored in the .const section in the flash memory.
 +
*Normally, during compilation, the linker will assign these data after the program code (.text section).
 +
*Since .const is accessed by auto-psv function, to maximize the space for constant data (32kb), the .const section needs to be aligned at 0x80000 boundary.
 +
*This requires the following change in linker script:
 +
 
 +
  __CONST_BASE = 0x8000;
 +
 
 +
  .text __CODE_BASE :
 +
  {
 +
  *(.reset);
 +
        *(.handle);
 +
        *(.libc) *(.libm) *(.libdsp);  /* keep together in this order */
 +
        *(.lib*);
 +
        /* *(.text); deleted to maximize space for const data */
 +
  } >program
 +
 
 +
  .const __CONST_BASE :
 +
  {
 +
  *(.const);
 +
  } >program
 +
 
 +
*If your program is large, after this change in linker script, function calls may involve large jump in the memory map (>32kB). As a result, you may need to enable the large code and large memory model during compilation. In such case, use the following options in your build path:
 +
    -mlarge-code -mlarge-data
 +
*Meanwhile, functions that are defined in the standard C libraries, but are replaced with your own implementations (e.g. I/O stubs: open(), read(), write(), lseek(), ioctl() etc.) may have the following linker error:
 +
    /usr/pic30-elf/lib//libc-elf.a(fflush.eo)(.libc+0x3c): In function '.LM11':
 +
    : Link Error: relocation truncated to fit: PC RELATIVE BRANCH _write
 +
    /usr/pic30-elf/lib//libc-elf.a(fclose.eo)(.libc+0x42): In function '.LM18':
 +
    : Link Error: relocation truncated to fit: PC RELATIVE BRANCH _close
 +
*To resolve the problem, you need to place the functions in the .libc section rather than in the .text section, like this:
 +
    int _LIBC open(const char *pathname, int flags){ ... }
 +
    int _LIBC close(int fd){ ... }
 +
    int _LIBC write(int fd, void* buf, int count) { ... }
 +
    int _LIBC read(int fd, void* buf, int count) { ... }
 +
    int _LIBC ioctl(int fd, int request, void* argp) { ... }
 +
    int _LIBC lseek(int fd, int offset, int whence) { ... }
 +
 
 +
 
 +
==System Setup==
 +
 
 +
===Clock Speed===
 
*System clock source can be provided by:
 
*System clock source can be provided by:
 
#Primary oscillator (OSC1, OSC2)
 
#Primary oscillator (OSC1, OSC2)
Line 102: Line 162:
 
*These clock sources can be incorporated with interal Phase-locked-loop (PLL) x4, x8 or x16 to yield the osciallator frequrence F<sub>OSC</sub>
 
*These clock sources can be incorporated with interal Phase-locked-loop (PLL) x4, x8 or x16 to yield the osciallator frequrence F<sub>OSC</sub>
 
*The system clock is divided by 4 to yield the internal instruction cycle clock, F<sub>CY</sub>=F<sub>OSC</sub>/4
 
*The system clock is divided by 4 to yield the internal instruction cycle clock, F<sub>CY</sub>=F<sub>OSC</sub>/4
*FRC with PLLx16 is used to achieve F<sub>CY</sub>=29.49MHz (29491200Hz or 30MIPS)
 
  
  //The code (MACRO) below is to be placed at the top of program (before main)
 
    _FOSC(CSW_FSCM_OFF & FRC_PLL16);
 
    _FWDT(WDT_OFF);    //Turn off Watchdog Timer
 
    _FBORPOR(PBOR_ON & BORV_27 & MCLR_DIS & PWRT_16);
 
    _FGS(CODE_PROT_OFF); //Disable Code Protection
 
  
 
+
===System Clock===
==Timer==
 
 
*Each timer is 16-bit (i.e. counting from 0 to 65535).
 
*Each timer is 16-bit (i.e. counting from 0 to 65535).
*Timer 2 and 3 can be incorporated together to form a 32-bit timer.
 
 
*Prescale is the ratio between timer counts and system clock counts. Prescales of 1:1, 1:8, 1:64 and 1:256 are available.
 
*Prescale is the ratio between timer counts and system clock counts. Prescales of 1:1, 1:8, 1:64 and 1:256 are available.
*Timers may be used to implement free time clock or mesaure time.
 
 
===Free Time Clock===
 
 
*Let required time for ticking be PERIOD.
 
*Let required time for ticking be PERIOD.
 
*Number of instruction cycles during PERIOD = PERIOD*F<sub>CY</sub> cycles
 
*Number of instruction cycles during PERIOD = PERIOD*F<sub>CY</sub> cycles
 
*Using a prescale of 1:x, the timer period count register = # of cycles/x
 
*Using a prescale of 1:x, the timer period count register = # of cycles/x
*e.g. PERIOD = 10ms; # of cycles = 10ms*30MHz = 300000 cylces; Using 1:64 Prescale, register setting = 300000/64 = 4688
+
*e.g. PERIOD = 10ms; # of cycles = 10ms*40MHz = 400000 cycles; Using 1:8 Prescale, register setting = 400000/8 = 50000
   void time_init(void){
+
   void
      TMR1 = 0; // Clear register
+
  prvSetupTimerInterrupt (void)
      PR1 = 4688; // Set period
+
  {
      //============================================================
+
    T1CON = 0;
      _T1IF = 0; // Clear interrupt flag
+
    TMR1 = 0;
      _T1IE = 1; // Enable interrupts
+
    PR1 = 50000;
      //============================================================
+
    //============================================================
      T1CONbits.TCS = 0; // Use internal clock source
+
    IPC0bits.T1IP = configKERNEL_INTERRUPT_PRIORITY;
      T1CONbits.TCKPS = 2; // Prescale Select 1:64
+
    IFS0bits.T1IF = 0;
      T1CONbits.TON = 1; // Start the timer
+
    IEC0bits.T1IE = 1;
 +
    //============================================================
 +
    T1CONbits.TCKPS0 = 1;
 +
    T1CONbits.TCKPS1 = 0;
 +
    T1CONbits.TON = 1;  
 
   }
 
   }
 
   //********************************************************************
 
   //********************************************************************
   void _ISRFAST _T1Interrupt(void){
+
   void _IRQ
      _T1IF = 0; // Clear interrupt flag
+
  _T1Interrupt (void)
      //Place user code here
+
   {
  }
+
    IFS0bits.T1IF = 0;
 
+
    vTaskIncrementTick();
===Time Measurement===
+
    portYIELD();
*To measure the time taken for action(), use the code below:
 
   unsigned int measure_time(void){
 
      PR3 = 0xFFFF; // Set counter to maximum
 
      _T3IF = 0; // Clear interrupt flag
 
      _T3IE = 0; // Disable interrupt
 
      T3CONbits.TON = 1; // Start the timer, TMR3 count up
 
      TMR3 = 0; //Clear TMR3 to start count up
 
      //====================================================
 
      //Add code here to wait for something to happen
 
      action();
 
      //====================================================
 
      T3CONbits.TON = 0; //Stop the timer
 
      //====================================================
 
      return (unsigned int) TMR3/FCY;     //TMR/FCY yields the actual time
 
 
   }
 
   }
  
  
==Interrupt==
+
===<asm/system.h>===
 
*Registers are involved in Interrupts includes:  
 
*Registers are involved in Interrupts includes:  
 
#Interrupt Flag Status (IFS0-IFS2) registers
 
#Interrupt Flag Status (IFS0-IFS2) registers
Line 171: Line 210:
 
   #define cli()            SR |= IPL    //Set IPL to 7
 
   #define cli()            SR |= IPL    //Set IPL to 7
 
   #define sti()            SR &= ~IPL  //Set IPL to 0
 
   #define sti()            SR &= ~IPL  //Set IPL to 0
  //============================================================
 
  char adc_ioctl(unsigned char request, unsigned char* argp){
 
    //...
 
    cli(); //Disable global interrupt
 
    for(;ch<=argp[0];ch++)
 
      adc_add_ch(argp[ch]); //Add adc channels
 
    sti(); //Enable global interrupt
 
    //...
 
    return 0;
 
  }
 
*dsPic30F has an [http://ww1.microchip.com/downloads/en/DeviceDoc/80223D.pdf errate note] on the Interrupt Controller. When Nested Interrupt is turned on (NSTDIS=0 by default), a high priority interrupt negating a low priority interrupt may result in an Address Error.
 
*To work around the problem, it is suggested by Microchip to use the following MACRO to protect:
 
# the clearing of Interrput Flag
 
# the disabling of Interrupt Enable
 
# the lowering of Interrupt Priority
 
# the modification of IPL in Status Register to 1-6
 
  #define DISI_PROTECT(X)        { \
 
                                      __asm__ volatile ("DISI #0x1FFF");\
 
                                      X; \
 
                                      DISICNT = 0; \
 
                                  }
 
*For example,
 
  void _ISR _T1Interrupt( void )
 
  {
 
      DISI_PROTECT(IFS0bits.T1IF = 0);
 
      //do something here...
 
  }
 
 
 
==UART==
 
*5011 provides two UART channels UxART, for x=1, 2.
 
*UxMODE, UxSTA, UxBRG are registers used to set the mode, indicate the status, and set the baud rate respectively.
 
*For UART communications compatiable with RS232 standard, an external driver (e.g. MAX3232ESE) is needed.
 
*For UART communications compatiable with RS485 standard, an external driver (e.g. DS3695N) is needed.
 
===Auto baud rate detection===
 
*The method is provided by [[Bootloader Development | ingenia bootloader]].
 
*The PC sends a ASCII character 'U' (0x55) to the target board.
 
*On the first rising edge of the start bit, the target board starts the timer.
 
*At the fifth rising edge, the timer is stopped, let the count number be ''t_count''.
 
**The measured period corresponds to 8 bits transmitted at a baud rate ''uxbrg''.
 
    _  _  _  _  _  _
 
  _|S|_|1|_|1|_|1|_|1|_|S|_  (S = Start Bit)
 
    |              |
 
    |<------------->|
 
    Measured Time
 
*The relationship between ''uxbrg'' and ''TMR'' is
 
  Measured Time (in seconds) = t_count/F<sub>cy</sub>
 
  uxbrg = 1/(Measured Time/8)
 
        = 8*F<sub>cy</sub>/t_count
 
*Since UxBRG is computed by:
 
  UxBRG = (F<sub>cy</sub>/(16*Baudrate)) -1
 
        = (F<sub>cy</sub>/(16*8*F<sub>cy</sub>/t_count)) -1
 
        = t_count/128 -1
 
*The following is the code for auto baud rate detection for U2ART:
 
  unsigned int uart2_autobaud(void){
 
      U2MODEbits.ABAUD = 1; //Enable Autobaud detect from U2RX (from IC2 if 0)
 
      U2MODEbits.UARTEN = 1; //U2ART enable
 
      //Timer 3 Config==========================================================
 
      PR3 = 0xFFFF; // Set counter to maximum
 
      _T3IF = 0; // Clear interrupt flag
 
      _T3IE = 0; // Disable interrupt
 
      T3CONbits.TON = 1; // Start the timer, TMR3 count up
 
      //Input Capture Config====================================================
 
      IC2CONbits.ICM = 3; //Detect rising
 
      _IC2IF = 0; //Clear interrupt flag
 
      _IC2IE = 0; //Disable interrupt
 
      //Start Auto baud detection===============================================
 
      unsigned int i=0;
 
      cli(); //Disable Global Interrupt
 
      while(!_IC2IF); //1st rising edge detected
 
      TMR3 = 0; //Clear TMR3 to start count up
 
      _IC2IF = 0; //Clear interrupt flag
 
      while(!_IC2IF); //2nd rising edge detected
 
      _IC2IF = 0; //Clear interrupt flag
 
      while(!_IC2IF); //3rd rising edge detected
 
      _IC2IF = 0; //Clear interrupt flag
 
      while(!_IC2IF); //4th rising edge detected
 
      _IC2IF = 0; //Clear interrupt flag
 
      while(!_IC2IF); //5th rising edge detected
 
      _IC2IF = 0; //Clear interrupt flag
 
      T3CONbits.TON = 0; //Stop the timer
 
      sti(); //Enable Global Interrupt
 
      //Compute value for BRG register==========================================
 
      unsigned int time;
 
      time = ((TMR3+0x40)>>7)-1; //+0x40 for rounding
 
      //========================================================================
 
      return time;
 
  }
 
*For 30MIP, tested speeds of transmission include 9600bps, 19200bps, 28800bps, 38400bps and 57600bps.
 
  
===open()===
 
*The following structures and variables are used as circular buffers for transmit and receive.
 
  struct UART_Rx{
 
      unsigned char  wr;
 
      unsigned char  rd;
 
  };
 
  struct UART_Tx{
 
      unsigned char  wr;                           
 
      unsigned char  rd;
 
      unsigned char  tx_complete_flag;
 
  };
 
  struct UART_Rx uart_rx;
 
  struct UART_Tx uart_tx;
 
  unsigned char uart_rx_buf[MAX_UART_RX_BUF];
 
  unsigned char uart_tx_buf[MAX_UART_TX_BUF];
 
  
  char uart_open()
+
==POSIX System Call and Drivers==
  {
+
*POSIX System calls (open(), close(), read(), write(), lseek()) are used to access hardware devices related to data stream.
      uart_rx.wr = 0;
+
*The file descriptor return by open() for these devices are statically assigned at compile time.
      uart_rx.rd = 0;
 
      uart_tx.wr = 0;
 
      uart_tx.rd = 0;
 
      uart_tx.tx_complete_flag = 1;
 
      uart2_init();
 
      return 0;
 
  }
 
  
  void uart2_init(void){
 
      unsigned int u2brg = 97;
 
      #if(AUTO_BAUD_DECT>0)
 
      u2brg = uart2_autobaud();
 
      #endif
 
      U2BRG  = u2brg;
 
      //=================================================================
 
      // Disable U2ART
 
      U2MODEbits.UARTEN = 0; //Disable U2ART module
 
      //=================================================================
 
      // Configure Interrupt Priority
 
      _U2RXIF = 0; //Clear Rx interrupt flags
 
      _U2TXIF = 0; //Clear Tx interrupt flags
 
      _U2RXIE = 1; //Receive interrupt: 0 disable, 1 enable
 
      _U2TXIE = 1; //Transmit interrupt: 0 disable, 1 enable
 
      //=================================================================
 
      // Configure Mode
 
      //  +--Default: 8N1, no loopback, no wake in sleep mode, continue in idle mode
 
      //  +--Diable autobaud detect
 
      //  +--Enable U2ART module
 
      U2MODEbits.ABAUD = 0; //Disable Autobaud detect from U2RX
 
      U2MODEbits.UARTEN = 1; //U2ART enable
 
      //=================================================================
 
      // Configure Status
 
      //  +--Default: TxInt when a char is transmitted, no break char
 
      //  +--Default: RxInt when a char is received, no address detect, clear overflow
 
      //  +--Enable Transmit
 
      U2STAbits.UTXEN = 1; //Tx enable
 
  }
 
  
===write()===
+
===UART===
*This function writes a series of bytes to the circular buffer and start transmission.
+
*Serves as the default communication channel for STDIN, STDOUT and STDERR.
  int uart_write(unsigned char *buf, int count)
+
*Implementation of this driver allows transparent operation of printf() in standard C library.  
  {
 
      //If transimt has not completed, return busy
 
      if(uart_tx.tx_complete_flag == 0){
 
        return -1;           
 
      }
 
      else{
 
        uart_tx.tx_complete_flag = 0;
 
      }
 
      int next_data_pos;
 
      int byte = 0;
 
      for (; byte<count; byte++) {
 
        next_data_pos = pre_wr_cir254buf(  (unsigned char)uart_tx.wr,  
 
                                            (unsigned char)uart_tx.rd,
 
                                              MAX_UART_TX_BUF); 
 
        if (next_data_pos!=255) {
 
            //Valid data is available
 
            uart_tx_buf[uart_tx.wr] = (unsigned char) buf[byte];    //copy the char to tx_buf
 
            uart_tx.wr = next_data_pos;                                    //increment the ptr
 
        } else break;
 
      }
 
      //Raise Interrupt flag to initiate transmission
 
      _U2TXIF = 1;    //Start interrupt
 
      return byte;       
 
  }
 
*The interrupt routine reads from the circular buffer and send the data. The uart is opened such that the module will generate an TX Interrupt when it a byte is sent.
 
  void _ISR _U2TXInterrupt(void){
 
      DISI_PROTECT(_U2TXIF = 0); //Clear Interrupt Flag
 
      unsigned char next_data_pos;
 
      next_data_pos = pre_rd_cir254buf( (unsigned char)uart_tx.wr,
 
                                        (unsigned char)uart_tx.rd,
 
                                        MAX_UART_TX_BUF);
 
      if (next_data_pos!= 255) {
 
        //Valid Data is available to transmit
 
        U2TXREG = (uart_tx_buf[(unsigned char)uart_tx.rd] & 0xFF);  //send next byte...
 
        uart_tx.rd = (unsigned char) next_data_pos;    //update rd pointer
 
      } else {
 
        //Transimission has completed
 
        uart_tx.tx_complete_flag = 1;    // change to empty of tx
 
      }
 
  }
 
  
===read()===
 
*The interrupt routine writes to the circular buffer when space is available.
 
  void _ISR _U2RXInterrupt(void){
 
      unsigned char next_data_pos;
 
      if ( U2STAbits.URXDA ){
 
        next_data_pos = pre_wr_cir254buf( uart_rx.wr, uart_rx.rd, MAX_UART_RX_BUF);
 
        if (next_data_pos!=255) {
 
            //If buffer is not full
 
            uart_rx_buf[uart_rx.wr] = (unsigned char) U2RXREG; //Read the data from buffer
 
            uart_rx.wr = next_data_pos;
 
          }
 
          else{
 
            //When buffer is full, still remove data from register, butthe incoming data is lost
 
            next_data_pos = (unsigned char) U2RXREG; //Read the data from buffer
 
          }
 
      }
 
      DISI_PROTECT(_U2RXIF = 0);        //Clear the flag
 
  }
 
*This function reads one byte from the circular buffer.
 
  int uart_read(unsigned char *buf)
 
  {
 
      int next_data_pos;
 
      next_data_pos = pre_rd_cir254buf( uart_rx.wr, uart_rx.rd, MAX_UART_RX_BUF);
 
      //Copy 1 byte when data is available
 
      if (next_data_pos!=255)
 
      {
 
        *buf = uart_rx_buf[uart_rx.rd];    //copy the stored data to buf
 
        uart_rx.rd = next_data_pos;                //update the ptr
 
        return 1;
 
      }
 
      //No data can be copied
 
      else
 
      {
 
          return 0;
 
      }     
 
  }
 
  
 
+
===I<sup>2</sup>C===
==I<sup>2</sup>C==
+
*A number of I2C devices can be added using this driver (e.g. I2C DAC, I2C EEPROM, etc)
 
*Two lines are devoted for the serial communication. SCL for clock, SDA for data.
 
*Two lines are devoted for the serial communication. SCL for clock, SDA for data.
 
*Standard communication speed includes
 
*Standard communication speed includes
Line 406: Line 229:
 
#Fast speed mode: 400kHz
 
#Fast speed mode: 400kHz
 
#High speed mode: 3.4MHz
 
#High speed mode: 3.4MHz
*dsPIC30f5011 supports standard and fast speed modes. The maximum speed attainable is 1MHz.
 
 
*Pull-up resistors are required for both SCL and SDA. Minimum pull-up resistance is given by:
 
*Pull-up resistors are required for both SCL and SDA. Minimum pull-up resistance is given by:
 
     Pull-up resistor (min) = (V<sub>dd</sub>-0.4)/0.003  ......  [See section 21.8 in Family reference manual]
 
     Pull-up resistor (min) = (V<sub>dd</sub>-0.4)/0.003  ......  [See section 21.8 in Family reference manual]
 
*2.2Kohm is typical for standard speed mode.
 
*2.2Kohm is typical for standard speed mode.
 
*After initiating a start/stop/restart bit, add a small delay (e.g. no operation) before polling the corresponding control bit (hardware controlled).
 
*After initiating a start/stop/restart bit, add a small delay (e.g. no operation) before polling the corresponding control bit (hardware controlled).
*After sending a byte and receiving an acknowledgement from the slave device, ensure to change to idle state.
+
*After sending a byte and receiving an acknowledgment from the slave device, ensure to change to idle state.
  
===open()===
 
*The following structure is used to record whether special bits are needed to be sent.
 
  typedef union{
 
      unsigned char val;
 
      struct{
 
          unsigned START:1;      //start
 
          unsigned RESTART:1;    //restart
 
          unsigned STOP:1;        //stop
 
          unsigned NACK:1;        //not acknowledgment
 
          unsigned :1;
 
          unsigned :1;
 
          unsigned :1;
 
          unsigned :1;   
 
      }bits;
 
  } I2C_STATUS;
 
  static I2C_STATUS i2c_status; 
 
  
*Initializing I<sup>2</sup>C with default speed I2C_BRG without interrupts.
+
===ADC===
  void i2c_open(void)
+
*12-bit ADC: (Max 18 Channels)
  {
+
*ADC uses DMA to buffer the adc data.
      //Open i2c if not already opened
+
*A maximum of 500kps of sampling rate when using auto sampling mode.
      if(I2CCONbits.I2CEN == 0)
 
      {
 
          _SI2CIF = 0;        //Clear Slave interrupt
 
          _MI2CIF = 0;        //Clear Master interrupt
 
          _SI2CIE = 0;        //Disable Slave interrupt
 
          _MI2CIE = 0;        //Disable Master interrupt
 
          I2CBRG = I2C_BRG;
 
          I2CCONbits.I2CEN = 1;  //Enable I2C module
 
          i2cIdle();              //I2C bus at idle state, awaiting transimission
 
          i2c_status.val = 0;    //clear status flags
 
      }
 
  }
 
 
 
===ioctl()===
 
*Use this function before read/write to append special bits before or after the data byte.
 
  char i2c_ioctl(unsigned char request, unsigned char* argp)
 
  {
 
      switch(request){
 
          case I2C_SET_STATUS:
 
              i2c_status.val = *argp;
 
              break;
 
          default:
 
              return -1;      //request code not recognised 
 
      }
 
      return 0;
 
  }
 
 
 
===write()===
 
*This function sends an 8-bit data using the I2C protocol.
 
  Mst/Slv    _______ M ____M___ S M ________
 
  SDA (Data)       |S|  data  |A|S|
 
                    |T|        |C|T|
 
                    |A|XXXXXXXX|K|P|
 
*Use ioctl() to select whether a start/restart/stop bit is required.
 
*If slave does not respond after ACK_TIMEOUT, the transmission is considered unsucessful.
 
  int i2c_write(unsigned char *buf)
 
  {
 
      unsigned int count = 0;
 
      if(i2c_status.bits.START)
 
      {
 
          I2CCONbits.SEN = 1;               
 
          Nop();                          //A small delay for hardware to respond
 
          while(I2CCONbits.SEN);          //Wait till Start sequence is completed
 
      }
 
      else if(i2c_status.bits.RESTART)
 
      {
 
          I2CCONbits.RSEN = 1;               
 
          Nop();                          //A small delay for hardware to respond
 
          while(I2CCONbits.RSEN);        //Wait till Start sequence is completed
 
      }
 
      I2CTRN = *buf;                  //Transmit register
 
      while(I2CSTATbits.TBF);        //Wait for transmit buffer to empty
 
      while(I2CSTATbits.ACKSTAT){
 
          if(++count > ACK_TIMEOUT){
 
              //Slave did not acknowledge, byte did not transmit sucessfully,
 
              //send stop bit to reset i2c
 
              I2CCONbits.PEN = 1;
 
              Nop();                          //A small delay for hardware to respond
 
              while(I2CCONbits.PEN);          //Wait till stop sequence is completed
 
              i2cIdle();
 
              return 0;
 
          }
 
      }
 
      i2cIdle();
 
      if(i2c_status.bits.STOP)
 
      {
 
          I2CCONbits.PEN = 1;
 
          Nop();                          //A small delay for hardware to respond
 
          while(I2CCONbits.PEN);          //Wait till stop sequence is completed
 
          i2cIdle();
 
      }
 
      i2c_status.val = 0;            //Clear status
 
      return 1;
 
  }
 
  
===read()===
 
*This function reads 1 byte from slave using the I2C protocol.
 
  Mst/Slv    ____ ___S____ M M _____   
 
  SDA (Data)      |  data  |A|S|
 
                  |        |C|T|
 
                  |XXXXXXXX|K|P|
 
*Use ioctl() to select whether an ACK/NACK and/or STOP bit is needed to be sent.
 
  int i2c_read(unsigned char *buf)
 
  {
 
      I2CCONbits.RCEN = 1;                    //Enable Receive
 
      while(I2CCONbits.RCEN);
 
      I2CSTATbits.I2COV = 0;                  //Clear receive overflow
 
      *buf = (unsigned char) I2CRCV;          //Access the receive buffer
 
      I2CCONbits.ACKDT = (i2c_status.bits.NACK)? 1 : 0;
 
      I2CCONbits.ACKEN = 1;      //Send Acknowledgement/Not Acknowledgement
 
      i2cIdle();                  //I2C bus at idle state, awaiting transimission
 
      if(i2c_status.bits.STOP)
 
      {
 
          I2CCONbits.PEN = 1;
 
          Nop();                          //A small delay for hardware to respond
 
          while(I2CCONbits.PEN);          //Wait till stop sequence is completed
 
          i2cIdle();
 
      }
 
      i2c_status.val = 0;            //Clear status
 
      return 1;
 
  }
 
  
===Example===
+
===Simple PWM (Output Compare Module)===
  Mst/Slv    _______ M ___M___ M S ____M___ S M ___M___ M S ___S____ M ___S____ M M _____
 
  SDA (Data)        |S|      | |A|        |A|R|      | |A|        |A|        |N|S|
 
                    |T|address|W|C|channelA|C|E|address|R|C| Data H |C| Data L |A|T|
 
                    |A|1001111|0|K|00010010|K|S|1001111|1|K|10101010|K|10XXXXXX|K|P|
 
 
 
  /*
 
    * Send start bit, slave address (Write Mode)
 
    */
 
  status = I2C_START;
 
  i2c_ioctl(I2C_SET_STATUS, &status);
 
  data = (unsigned char) I2C_SLAVE_ADDR;
 
  i2c_write(&data);
 
  /*
 
    * Send control byte: Channel select
 
    */
 
  data = (unsigned char) ctrl_byte;
 
  i2c_write(&data);
 
  /*
 
    * Send restart bit, slave address (Read Mode)
 
    */
 
  status = I2C_RESTART;
 
  i2c_ioctl(I2C_SET_STATUS, &status);
 
  data = (unsigned char) (I2C_SLAVE_ADDR|0x01);
 
  i2c_write(&data);
 
  /*
 
    * Receive High Byte with Acknowledgment
 
    */
 
  i2c_read(&data);
 
  usr_data.high = (unsigned char) data;
 
  /*
 
    * Receive Low Byte with Not Acknowledgment and stop bit
 
    */
 
  status = I2C_NACK | I2C_STOP;
 
  i2c_ioctl(I2C_SET_STATUS, &status);
 
  i2c_read(&data);
 
  usr_data.low = (unsigned char) data;
 
 
 
 
 
==ADC==
 
*12-bit ADC: (Max 16 Channels)
 
*Allow a maximum of 2 sets of analog input multiplexer configurations, MUX A and MUX B (Normally use one only).
 
*A maximum of 200kps of sampling rate when using auto sampling mode.
 
===open()===
 
*The following variables are required.
 
  unsigned int adc_buf[ADC_MAX_CH];  //Store most updated data
 
  volatile unsigned int* ADC16Ptr = &ADCBUF0; //Pointer to ADC register buffer,
 
  unsigned char adc_ch_select = 0;  //Pointer to channel to be read from
 
  unsigned char adc_data_ready = 0;  //Indicate if RAM data is ready for output
 
*Configuration is highlighted below.
 
**Interrupt: The ADC module will be set to interrupt when the specified channels are updated.
 
**I/O: Set the corresponding TRISBX bits (digit i/o config) to input (i.e. = 1), and set corresponding bits in ADPCFG (analog config) to zero.
 
**Scanning Mode: Scan mode is used. In this mode, the Sample and Hold (S/H) is switched between the channels specified by ADCSSL (Scan select register).
 
**Reference Voltage for S/H: Only MUX A is used. By default, the negative reference voltage of the S/H is connected to V<sub>REF-</sub>.
 
**Settings for ADC Operation: For 200kbps operation, the voltage references for the ADC voltage are connected to V<sub>REF+</sub> and V<sub>REF-</sub>. Scan input is enabled, and the module will generate an interrupt when all selected channels have been scanned.
 
**Sampling Rate: T<sub>AD</sub> refers to the time unit for the ADC clock. To configure the ADC module at 200kbps, the minimum sampling time of 1T<sub>AD</sub> = 334ns is required. ADCS<5:0> in ADCON3 register is used to set the time, which is given by:
 
      ADCS<5:0> = 2(T<sub>AD</sub>/T<sub>CY</sub>)-1
 
                = 2(334e-9/33.34e-9)-1
 
                = 19
 
 
 
  char adc_open(int flags)
 
  {
 
      // Configure interrupt
 
      _ADIF = 0;                          //clear ADC interrupt flag
 
      _ADIE = 1;                          //enable adc interrupt
 
    // Configure analog i/o 
 
    _TRISB0 = 1;
 
    _TRISB1 = 1;   
 
    ADPCFG = 0xFFFC;                    //Enable AN0 (Vref+) and AN1 (Vref-)
 
    // Configure scan input channels   
 
    ADCSSL = 0x0003;    //0 => Skip, 1 => Scan
 
    // Configure CH0 Sample and Hold for 200kbps
 
    //  +-- Use MUX A only
 
    //  +-- Set CH0 S/H -ve to VRef-
 
    ADCHSbits.CH0NA = 0;
 
    // ADCCON3:
 
    //  +--Auto Sample Time = 1TAD
 
    //  +--A/D Conversion Clock Source = system clock
 
    //  +--A/D Conversion Clock Select ADCS<5:0>= 2(TAD/TCY)-1
 
    //      200kbps(Sampling frequency)
 
    ADCON3bits.SAMC = ADC_ACQ_TIME;    //1TAD for sampling time
 
    ADCON3bits.ADRC = 0;                //Use system clock
 
    ADCON3bits.ADCS = ADC_ADCS;        //each conversion requires 14TAD
 
    // ADCCON2:
 
    //  +--Default: Use MUX A, No splitting of Buffer
 
    //  +--Voltage Reference Configuration Vref+ and Vref-
 
    //  +--Scan Input Selections
 
    //  +--5 samples between interrupt
 
    ADCON2bits.VCFG = 3;                //External Vref+, Vref-
 
    ADCON2bits.CSCNA = 1;              //Scan input
 
    ADCON2bits.SMPI = 1;                //take 2 samples (one sample per channel) per interrupt
 
    // ADCCON1:
 
    //  +--Default: continue in idle mode, integer format
 
    //  +--Enable ADC, Conversion Trigger Source Auto, Auto sampling on
 
    ADCON1bits.FORM = 0;                //[0:integer]; [2 fractional]; [3 siged fractional]
 
    ADCON1bits.SSRC = 7;                //auto covert, using internal clock source
 
    ADCON1bits.ASAM = 1;                //auto setting of SAMP bit
 
    ADCON1bits.ADON = 1;                //Turn on module
 
    return 0;
 
  }
 
 
 
===read()===
 
*16 registers (ADCBUF0 -ADCBUF15) are dedicated to store the ADC data between interrupts. However, the data in ADCBUFx does not necessarily correspond to the data taken for channel x. Since the lowest register will always be filled first, when some of the channels are not scanned (i.e. skipped), care must be taken. The following code checks the ADCSSL register for the current scanning channels and moves the data to the corresponding position in *adc_buf.
 
  void _ISR _ADCInterrupt(void){
 
      unsigned int channel = 0;
 
      unsigned int buffer = 0;
 
      for (; channel<ADC_MAX_CH; channel++)
 
      {
 
        if(select(channel))      //Check if channel has been selected
 
        {
 
            adc_buf[channel] = ADC16Ptr[buffer];    //Copy data to adc_buf
 
            buffer++;
 
        }
 
      }
 
      adc_data_ready = 1;
 
      DISI_PROTECT(_ADIF = 0);  //Clear adc interrupt
 
  }
 
 
 
  static unsigned char select(unsigned char ch)
 
  {
 
      unsigned int mask;
 
      mask = 0x0001 << ch;
 
      if(ADCSSL & mask)
 
          return 1;
 
      return 0;
 
  }
 
*User can read from the buffer at anytime to get the most updated analog values.
 
  int adc_read(unsigned int* buf, int count)
 
  {
 
      if(adc_data_ready == 1)
 
      {
 
        int num_channel = count/2;                  //number of channels to read
 
        unsigned char channel = adc_ch_select;    //index for adc_buf
 
        int i = 0;                                  //index for buf
 
        while(i<num_channel && channel<ADC_MAX_CH)
 
        {
 
            //Loop only for specified number of channel or all channels
 
            buf[i++] = adc_buf[channel++];      //use data in local buffer
 
            while(select(channel)==0)
 
            {  //increment to next valid channel
 
              channel++;                 
 
              if(channel >= ADC_MAX_CH) break;
 
            }
 
        }
 
        return 2*i;
 
      }
 
      return -1;
 
  }
 
 
 
===ioctl()===
 
*This function is used to add or remove channels from the ADC scanning process.
 
  char adc_ioctl(unsigned char request, unsigned char* argp)
 
  {
 
      switch(request)
 
      {
 
          case ADC_ADD_CH:
 
              //ADD channels to current set==========================
 
              cli();                      //Disable global interrupt
 
              if(select(argp[0]) == 0){  //If channel not in scan list
 
                  adcAdd(argp[0]);            //Add individual channel to scan list
 
                  adc_data_ready = 0;        //First data not ready yet, until interrupt occurs
 
              }
 
              adc_ch_select = argp[0];    //Select current channel for reading
 
              sti();                      //Enable global interrupt
 
              break;
 
          case ADC_RM_CH:
 
              //REMOVE channels from current set==========================
 
              cli();                  //Disable global interrupt
 
              if(select(argp[0])){    //If channel in scan list     
 
                  adcRm(argp[0]);            //Remove individual channel
 
                  adc_ch_select = 0;          //Reset to AN0
 
              }
 
              sti();                  //Enable global interrupt
 
              break;
 
          default:
 
              return -1;      //request code not recognised 
 
      }
 
      return 0;
 
  }
 
*Channels may be added or removed by changing _TRISBX, ADPCFG, ADCSSL and ADCON2bits.SMPI.
 
  void adc_add_ch(unsigned char ch){
 
      unsigned int mask;
 
      mask = 0x0001 << ch;
 
      TRISB = TRISB | mask;
 
      ADCSSL = ADCSSL | mask;
 
      ADPCFG = ~ADCSSL;
 
      ADCON2bits.SMPI++; //take one more sample per interrupt
 
  }
 
 
 
  void adc_rm_ch(unsigned char ch){
 
      unsigned int mask;
 
      mask = 0x0001 << ch;
 
      ADPCFG = ADPCFG | mask;
 
      ADCSSL = ~ADPCFG;
 
      ADCON2bits.SMPI--; //take one less sample per interrupt
 
  }
 
 
 
 
 
==EEPROM==
 
*5011 has 1024 bytes of EEPROM, readable and writable under normal voltage (5V).
 
*To use, declare:
 
  unsigned char _EEDATA(2) eeData[1024]={ 0x00, 0x00, 0x00, 0x00, .... }
 
  unsigned int byte_pointer = 0;
 
===lseek()===
 
*This function moves the pointer to the desired position before a reading/writing operation is performed.
 
  int eeprom_lseek(int offset, unsigned char whence){
 
      byte_pointer = offset;
 
      return byte_pointer;
 
  }
 
===read()===
 
*This function read ''count'' bytes from the eeprom.
 
  int eeprom_read(unsigned char* buf, int count){
 
      int i=0;
 
      for(; i<count && byte_pointer < 1024; i++){
 
        readEEByte( __builtin_tblpage(eeData),
 
                    __builtin_tbloffset(eeData) + byte_pointer,
 
                    &buf[i]);
 
        byte_pointer++; //Update global pointer
 
      }
 
      return i; //read i bytes successful
 
  }
 
*readEEByte() is implemented in assembly code as follows:
 
  .global _readEEByte
 
  _readEEByte:
 
      push      TBLPAG ;w0 = base of eeData
 
      mov      w0, TBLPAG ;w1 = offset for eeData in byte
 
      tblrdl.b  [w1], [w2] ;w2 = pointer to user buffer
 
      pop    TBLPAG
 
      return
 
 
 
===write()===
 
*This function write ''count'' bytes to eeprom.
 
  int eeprom_write(unsigned char* buf, int count){
 
      char isOddAddr = byte_pointer%2; //current address is odd
 
      char isOddByte = count%2; //number of bytes to write is odd
 
      //=================================================================
 
      unsigned int word_offset = byte_pointer>>1; //div by 2 and round down
 
      int max_write;
 
      max_write = (isOddAddr == 0 && isOddByte == 0) ? (count>>1) : (count>>1)+1;
 
      //=================================================================
 
      unsigned int word_data; //Store word to be written
 
      int byte_wr = 0; //number of bytes written, i.e buffer pointer
 
      int i = 0;
 
      //=================================================================
 
      for(; i<max_write && word_offset<512; i++, word_offset++){
 
        if(i==0 && isOddAddr){
 
            //First byte not used
 
            //============================================save first byte
 
            readEEByte( __builtin_tblpage(eeData),
 
                        __builtin_tbloffset(eeData) + byte_pointer - 1,
 
                        &word_data);
 
            //===========================================================
 
            word_data = ((unsigned int)buf[0] << 8) + (0xFF & word_data);
 
            byte_wr++; //Update buffer pointer
 
            byte_pointer++; //Update global pointer
 
          } else if(i==max_write-1 && ((isOddAddr && sOddByte==0)||(isOddAddr==0 && isOddByte))){
 
            //Last byte not used
 
            //=============================================save last byte
 
            readEEByte( __builtin_tblpage(eeData),
 
                        __builtin_tbloffset(eeData) + byte_pointer + 1,
 
                        &word_data);
 
            //============================================================
 
            word_data = (word_data << 8) + buf[byte_wr];
 
            byte_wr++; //Update buffer pointer
 
            byte_pointer++; //Update global pointer
 
          } else{
 
            //Both bytes valid
 
            word_data = ((unsigned int)buf[byte_wr+1] << 8) + buf[byte_wr];
 
            byte_wr+=2; //Update buffer pointer
 
            byte_pointer+=2; //Update global pointer
 
          }
 
      //==================================================================
 
      eraseEEWord( __builtin_tblpage(eeData),
 
                    __builtin_tbloffset(eeData) + 2*word_offset);
 
      writeEEWord( __builtin_tblpage(eeData),
 
                    __builtin_tbloffset(eeData) + 2*word_offset,
 
                    &word_data);
 
      //==================================================================
 
      }
 
      return byte_wr; //No. of byte written
 
  }
 
*eraseEEWord and writeEEWord are implemented in assembly.
 
  .global _eraseEEWord
 
  _eraseEEWord:
 
      push  TBLPAG
 
      mov    w0, NVMADRU ;w0 = base of eeData
 
      mov    w1, NVMADR ;w1 = offset for eeData in word
 
      mov    #0x4044, w0
 
      mov    w0, NVMCON ;Set to erase operation
 
      push  SR ;Disable global interrupts
 
      mov    #0x00E0, w0
 
      ior    SR
 
      mov    #0x55, w0 ;Write the KEY sequence
 
      mov    w0, NVMKEY
 
      mov    #0xAA, w0
 
      mov    w0, NVMKEY
 
      bset  NVMCON, #15 ;Start the erase cycle, bit 15 = WR
 
      nop
 
      nop
 
  L1: btsc  NVMCON, #15 ;while(NVMCONbits.WR)
 
      bra    L1
 
      clr    w0
 
      pop    SR ;Enable global interrupts
 
      pop    TBLPAG
 
      return
 
 
 
  .global _writeEEWord
 
  _writeEEWord:
 
      push  TBLPAG ;w0 = base of eeData
 
      mov    w0, TBLPAG ;w1 = offset for eeData in byte
 
      tblwtl [w2], [w1] ;w2 = pointer to user buffer
 
      mov    #0x4004, w0        ;Set to write operation
 
      MOV    w0, NVMCON
 
      push  SR ;Disable global interrupts
 
      mov    #0x00E0, w0
 
      ior    SR
 
      mov    #0x55, w0 ;Write the KEY sequence
 
      mov    w0, NVMKEY
 
      mov    #0xAA, w0
 
      mov    w0, NVMKEY
 
      bset  NVMCON, #15 ;Start the erase cycle, bit 15 = WR
 
      nop
 
      nop
 
  L2: btsc  NVMCON, #15 ;while(NVMCONbits.WR)
 
      bra    L2
 
      clr    w0
 
      pop    SR ;Enable global interrupts
 
      pop    TBLPAG
 
      return
 
 
 
 
 
==Simple PWM (Output Compare Module)==
 
 
*The PWM module consists of 8 channels using the output compare module of dsPic.
 
*The PWM module consists of 8 channels using the output compare module of dsPic.
 
*These channels are locate at pin 46 (OC1), 49 (OC2), 50 (OC3), 51 (OC4), 52 (OC5), 53 (OC6), 54 (OC7), 55 (OC8). These pins are shared with port D.
 
*These channels are locate at pin 46 (OC1), 49 (OC2), 50 (OC3), 51 (OC4), 52 (OC5), 53 (OC6), 54 (OC7), 55 (OC8). These pins are shared with port D.
Line 874: Line 249:
  
 
{| border="1" cellspacing="0" cellpadding="5"
 
{| border="1" cellspacing="0" cellpadding="5"
|+ Table 6.3 Relationship of Resolution and PWM Frequency
+
|+ Relationship of Resolution and PWM Frequency
 
! Resolution (bit) !! Prescale=1 !! Prescale=8 !! Prescale=64 !! Prescale=256
 
! Resolution (bit) !! Prescale=1 !! Prescale=8 !! Prescale=64 !! Prescale=256
 
|-  
 
|-  
Line 911: Line 286:
 
|}
 
|}
  
===open()===
 
*A timer (either Timer 2 or 3) is needed to determine the pwm period. The following code uses timer 2 for all 8 channels.
 
  void pwm_open(void){
 
    OC1CON = 0; OC2CON = 0; //Disable all output compare modules
 
    OC3CON = 0; OC4CON = 0;
 
    OC5CON = 0; OC6CON = 0;
 
    OC7CON = 0; OC8CON = 0;
 
    //============================================================
 
    TMR2 = 0; // Clear register
 
    PR2 = 0xFFFF; // Set to Maximum
 
    //============================================================
 
    _T2IF = 0; // Clear interrupt flag
 
    _T2IE = 0 // Enable interrupts
 
    //============================================================
 
    T2CONbits.TCS = 0; // Use internal clock source
 
    T2CONbits.TCKPS = 0; // Prescale Select 1:1
 
    //============================================================
 
    T2CONbits.TON = 1; // Start the timer
 
  }
 
  
===ioctl()===
+
===Flash-emulated EEPROM===
*User should select the channel and set the pwm period using the functions below before issuing the duty cycle:
+
*Using built-in functions __builtin_tblpage(), __builtin_tbloffset() to set special-purpose registers to access flash memory
  char pwm_ioctl(unsigned char request, unsigned long* argp){
+
*Using assembly code to read and write flash memory.
    unsigned int value;
 
    unsigned char mask;
 
    switch(request){
 
      case PWM_SET_PERIOD:
 
        return setPeriodNPrescale(argp[0]);
 
      case PWM_SELECT_CH:
 
        pwm_channel = argp[0];
 
        mask = 0x01 << pwm_channel;
 
        pwm_status = pwm_status | mask;
 
            return 0;
 
      default:
 
            return -1;
 
    }
 
  }
 
  char setPeriodNPrescale(unsigned long value_ns){
 
    unsigned long ans;
 
    unsigned long long numerator = (unsigned long long)value_ns*SYSTEM_FREQ_MHZ;
 
    int index= -1;
 
    unsigned long denominator;
 
    //-------------------------------------------------
 
    do{
 
        denominator = (unsigned long)1000*pwm_prescale[++index];
 
        ans = (unsigned long)(((long double)numerator/denominator) + 0.5) - 1; //round to nearest int
 
    } while(ans > 0x0000FFFF && index < 3);
 
    //-------------------------------------------------
 
    if(ans > 0x0000FFFF)
 
        return -1;
 
    //-------------------------------------------------
 
    T2CONbits.TON = 0; // Turn off the timer
 
    T2CONbits.TCKPS = index; // Change prescale factor
 
    PR2 = (unsigned int) ans; // Set to Maximum
 
    T2CONbits.TON = 1; // Turn on the timer
 
    //-------------------------------------------------
 
    return 0;
 
  }
 
 
 
===write()===
 
*User can change the duty cycle using the following functions
 
  int pwm_write(unsigned long* buf){
 
    if((pwm_status & (0x01 << pwm_channel)) == 0){
 
        return -1; //Channel has not been enabled
 
    }
 
    switch(pwm_channel){
 
        case 0:
 
            OC1RS = calcDCycle(buf[0]); OC1R = OC1RS;
 
            OC1CONbits.OCM = 6; //Simple PWM, Fault pin disabled
 
            break;
 
        case 1:
 
            OC2RS = calcDCycle(buf[0]); OC2R = OC2RS;
 
            OC2CONbits.OCM = 6; //Simple PWM, Fault pin disabled
 
            break;
 
        ...
 
        case 7:
 
            OC8RS = calcDCycle(buf[0]); OC8R = OC8RS;
 
            OC8CONbits.OCM = 6; //Simple PWM, Fault pin disabled
 
            break;
 
        default:
 
            return -1;
 
    }
 
    return 4;
 
}
 
  unsigned int calcDCycle(unsigned long value_ns){
 
    unsigned long long numerator = (unsigned long long)value_ns*SYSTEM_FREQ_MHZ;
 
    unsigned int index = T2CONbits.TCKPS;
 
    unsigned long denominator = (unsigned long)1000*pwm_prescale[index];
 
    return (unsigned int)(((long double)numerator/denominator) + 0.5) - 1; //round to nearest int
 
  }
 
 
 
===Propagration Delay===
 
*PWM channels sharing the same timer will have their PWM signals synchronised (i.e. the HIGH state of the duty cycle are all triggered together).
 
*To introduced delay to the PWM signals, the signal from selected channels may be made to pass through a series of inverters (e.g. 74HC14D). This adds propagation delay to the signal.
 
*However, as propagration delay of logic gates depends on applied voltage, temperature and load capacitance, the accuracy is low and performance is poor. For accurate delay, delay lines may be used, but they are expensive.
 
 
 
{| border="1" cellspacing="0" cellpadding="5"
 
|+ Table 6.4 Propagation Delay of [http://www.nxp.com/acrobat_download/datasheets/74HC_HCT14_3.pdf Philips 74HC14D]<sup>[1], [2]</sup>
 
! !! 3.3V !! !! !! 5.0V !! !!
 
|-
 
! Number of Gates !! A !! B !! C !! A !! B !! C
 
|-
 
| 2
 
| 21ns (10.5)|| 23ns (11.5)|| 22ns (11.0)
 
| 15ns (7.5)|| 14ns (7.0)|| 14ns (7.0)
 
|-
 
| 4
 
| 45ns (11.3)|| 46ns (11.5)|| 46ns (11.5)
 
| 30ns (7.5)|| 30ns (7.5)|| 30ns (7.5)
 
|-
 
| 6
 
| 69ns (11.5)|| 70ns (11.7)|| 72ns (12.0)
 
| 45ns (7.5)|| 46ns (7.7)|| 47ns (7.8)
 
|-
 
|}
 
[1] Data in specification for 4.5V: Typical 15ns, Maximum 25ns<br>
 
[2] Data in specification for 6.0V: Typical 12ns, Maximum 21ns
 
  
  
 
==DSP Library==
 
==DSP Library==
 +
*Not POSIX compliant
 
*Library functions in <dsp.h> include the following categories:  
 
*Library functions in <dsp.h> include the following categories:  
 
#Vector
 
#Vector
Line 1,054: Line 317:
 
**Floating point values can be converted to Fractional values using: '''fr = Float2Fract(fo);''' or '''fr = Q15(fo);''' for fo = [-1, 1-2<sup>-15</sup>]
 
**Floating point values can be converted to Fractional values using: '''fr = Float2Fract(fo);''' or '''fr = Q15(fo);''' for fo = [-1, 1-2<sup>-15</sup>]
 
**Float2Fract() is same as Q15(), except having saturation control. When +ve >= 1, answer = 2<sup>15</sup>-1 = 32767 (0x7FFF). When -ve < -1, answer = -2<sup>15</sup> = -32767 (0x8000)
 
**Float2Fract() is same as Q15(), except having saturation control. When +ve >= 1, answer = 2<sup>15</sup>-1 = 32767 (0x7FFF). When -ve < -1, answer = -2<sup>15</sup> = -32767 (0x8000)
 
 
==Build-in Library==
 
*Some assembler operators can only be accessed by inline assembly code, for example,
 
#Manuipulation of accumulators A and B (add, sub, mul, divide, shift, clear, square)
 
#Bit toggling
 
#Access to psv (program space visiblity) page and offset
 
#Access to table instruction page and offset
 
*Built-in functions are written as C-like function calls to utilize these assembler operators.
 
 
 
==Address Error==
 
*Possible Causes
 
**Misuse of C pointers
 

Revision as of 00:43, 31 August 2009

This wiki describes an example coding of the freertos_posix driver for the dsPic33 development board. Please refer to the actual coding used from here.

Memory

Memory Map for dsPIC33FJ256GP506

Table 11.1 Memory Location
Type Start Address End Address Size
Flash 0x000000 0x0157FF 86K[1]
+--Flash: Reset Vector 0x000000 0x000003 4
+--Flash: Interrupt Vector Table 0x000004 0x0000FF 252
+--Flash: Alternate Vector Table 0x000104 0x0001FF 252
+--Flash: User Program 0x000200 0x0157FF 85.5K
Programming Executive 0x800000 0x800FFF 4K[1]
Config Registers 0xF80000 0xF80017 24
Device ID (0xE5) 0xFF0000 0xFF0003 4

[1] Each address is 16-bit wide. Every two addresses correspond to a 24-bit instruction. Each even address contains 2 valid bytes; each odd address contains 1 valid byte plus 1 phathom byte.


Data Location

Type Description Example
_XBSS(N) [1] RAM Data in X-memory, aligned at N, no initilization int _XBSS(32) xbuf[16];
_XDATA(N) [1] RAM Data in X-memory, aligned at N, with initilization int _XDATA(32) xbuf[] = {1, 2, 3, 4, 5};
_YBSS(N) [1] RAM Data in Y-memory, aligned at N, no initilization int _YBSS(32) ybuf[16];
_YDATA(N) [1] RAM Data in Y-memory, aligned at N, with initilization int _YDATA(32) ybuf[16] = {1, 2, 3, 4, 5};
__attribute__((space(const))) Flash ROM data, constant, accessed by normal C
statements, but 32K max.
int i __attribute__((space(const))) = 10;
__attribute__((space(prog))) Flash ROM data, read/write by program space visibility
window (psv)
int i __attribute__((space(prog)));
__attribute__((space(auto_psv))) Flash ROM data, read by normal C statements, write
by accessing psv
int i __attribute__((space(auto_psv)));
__attribute__((space(psv))) Flash ROM data, read/write by (psv) int i __attribute__((space(psv)));
_EEDATA(N) [1] ROM Data in EEPROM, aligned at N, read/write with psv int _EEDATA(2) table[]={0, 1, 2, 3, 5, 8};
_PERSISTENT RAM Data, data remain after reset int _PERSISTENT var1, var2;
_NEAR RAM Data at near section int _NEAR var1, var2;
__attribute__((__interrupt__)) Interrupt service rountine void __attribute__((__interrupt__)) _INT0Interrupt(void);
_ISRFAST Fast interrupt service rountine void _ISRFAST _T0Interrupt(void);
  1. N must be a power of two, with a minimum value of 2.


<asm/types.h>

  • The following maps the basic data types:
 typedef unsigned char           __u8;
 typedef char                    __s8;
 typedef unsigned int            __u16;
 typedef int                     __s16;
 typedef unsigned long           __u32;
 typedef long                    __s32;
 typedef unsigned long long      __u64;
 typedef long long               __s64;
 
 //to be used in <time.h>
 typedef unsigned long           time_t;
  • The following macros are the platform-dependent
 /** Interrupt Request */
 #define _IRQ                    __attribute__((__interrupt__))
 /** TRAP IRQ for saving program counter: declare __u16 StkAddrLo, StkAddrHi in trap.c (order matters) */
 #define _TRAP_IRQ               __attribute__((__interrupt__(__preprologue__( \
                                 "mov #_StkAddrHi,w1\n\tpop [w1--]\n\tpop [w1++]\n\tpush [w1--]\n\tpush [w1++]"))))
 /** IO Stub Functions are placed in .libc section so that the standard libraries can access these functions using short jumps. */
 #define _LIBC                   __attribute__((section(".libc")))
 /** FAST RAM */
 #define _DMA                    __attribute__((space(dma),aligned(256)))


Custom Linker Script to Maximize Space for Constant Data

  • Constant data declared using keyword const will be stored in the .const section in the flash memory.
  • Normally, during compilation, the linker will assign these data after the program code (.text section).
  • Since .const is accessed by auto-psv function, to maximize the space for constant data (32kb), the .const section needs to be aligned at 0x80000 boundary.
  • This requires the following change in linker script:
 __CONST_BASE = 0x8000;
 
 .text __CODE_BASE :
 {
 	*(.reset);
       *(.handle);
       *(.libc) *(.libm) *(.libdsp);  /* keep together in this order */
       *(.lib*);
       /* *(.text);		deleted to maximize space for const data */
 } >program
 
 .const __CONST_BASE :
 {
 	*(.const);
 } >program
  • If your program is large, after this change in linker script, function calls may involve large jump in the memory map (>32kB). As a result, you may need to enable the large code and large memory model during compilation. In such case, use the following options in your build path:
   -mlarge-code -mlarge-data
  • Meanwhile, functions that are defined in the standard C libraries, but are replaced with your own implementations (e.g. I/O stubs: open(), read(), write(), lseek(), ioctl() etc.) may have the following linker error:
   /usr/pic30-elf/lib//libc-elf.a(fflush.eo)(.libc+0x3c): In function '.LM11':
   : Link Error: relocation truncated to fit: PC RELATIVE BRANCH _write
   /usr/pic30-elf/lib//libc-elf.a(fclose.eo)(.libc+0x42): In function '.LM18':
   : Link Error: relocation truncated to fit: PC RELATIVE BRANCH _close 
  • To resolve the problem, you need to place the functions in the .libc section rather than in the .text section, like this:
   int _LIBC open(const char *pathname, int flags){ ... }
   int _LIBC close(int fd){ ... }
   int _LIBC write(int fd, void* buf, int count) { ... }
   int _LIBC read(int fd, void* buf, int count) { ... }
   int _LIBC ioctl(int fd, int request, void* argp) { ... }
   int _LIBC lseek(int fd, int offset, int whence) { ... }


System Setup

Clock Speed

  • System clock source can be provided by:
  1. Primary oscillator (OSC1, OSC2)
  2. Secondary oscillator (SOSCO and SOSCI) with 32kHz crystal
  3. Internal Fast RC (FRC) oscillator at 7.37MHz (7372800Hz)
  4. Low-Power RC (LPRC) oscillator (Watchdog Timer) at 512 kHz.
  • These clock sources can be incorporated with interal Phase-locked-loop (PLL) x4, x8 or x16 to yield the osciallator frequrence FOSC
  • The system clock is divided by 4 to yield the internal instruction cycle clock, FCY=FOSC/4


System Clock

  • Each timer is 16-bit (i.e. counting from 0 to 65535).
  • Prescale is the ratio between timer counts and system clock counts. Prescales of 1:1, 1:8, 1:64 and 1:256 are available.
  • Let required time for ticking be PERIOD.
  • Number of instruction cycles during PERIOD = PERIOD*FCY cycles
  • Using a prescale of 1:x, the timer period count register = # of cycles/x
  • e.g. PERIOD = 10ms; # of cycles = 10ms*40MHz = 400000 cycles; Using 1:8 Prescale, register setting = 400000/8 = 50000
  void
  prvSetupTimerInterrupt (void)
  {
    T1CON = 0;
    TMR1 = 0;
    PR1 = 50000;
    //============================================================
    IPC0bits.T1IP = configKERNEL_INTERRUPT_PRIORITY;
    IFS0bits.T1IF = 0;
    IEC0bits.T1IE = 1;
    //============================================================
    T1CONbits.TCKPS0 = 1;
    T1CONbits.TCKPS1 = 0;
    T1CONbits.TON = 1; 
  }
  //********************************************************************
  void _IRQ 
  _T1Interrupt (void)
  {
    IFS0bits.T1IF = 0;
    vTaskIncrementTick();
    portYIELD();
  }


<asm/system.h>

  • Registers are involved in Interrupts includes:
  1. Interrupt Flag Status (IFS0-IFS2) registers
  2. Interrupt Enable Control (IEC0-IEC2) registers
  3. Interrupt Priority Control (IPC0-IPC10) registers
  4. Interrupt Priority Level (IPL) register
  5. Global Interrupt Control (INTCON1, INTCON2) registers
  6. Interrupt vector (INTTREG) register
  • User may assign priority level 0-7 to a specific interrupt using IPC. Setting priority to 0 disable a specific interrupt. Level 7 interrupt has the highest priority.
  • Current priority level is stored in bit<7:5> of Status Register (SR). Setting Interrupt Priority Level (IPL) to 7 disables all interrupts (except traps).
  • sti() and cli() can be defined to enable and disable global interrupts for time critical functions:
 #define IPL              ( 0x00e0 )
 #define cli()            SR |= IPL    //Set IPL to 7
 #define sti()            SR &= ~IPL   //Set IPL to 0


POSIX System Call and Drivers

  • POSIX System calls (open(), close(), read(), write(), lseek()) are used to access hardware devices related to data stream.
  • The file descriptor return by open() for these devices are statically assigned at compile time.


UART

  • Serves as the default communication channel for STDIN, STDOUT and STDERR.
  • Implementation of this driver allows transparent operation of printf() in standard C library.


I2C

  • A number of I2C devices can be added using this driver (e.g. I2C DAC, I2C EEPROM, etc)
  • Two lines are devoted for the serial communication. SCL for clock, SDA for data.
  • Standard communication speed includes
  1. Standard speed mode: 100kHz
  2. Fast speed mode: 400kHz
  3. High speed mode: 3.4MHz
  • Pull-up resistors are required for both SCL and SDA. Minimum pull-up resistance is given by:
    Pull-up resistor (min) = (Vdd-0.4)/0.003  ......  [See section 21.8 in Family reference manual]
  • 2.2Kohm is typical for standard speed mode.
  • After initiating a start/stop/restart bit, add a small delay (e.g. no operation) before polling the corresponding control bit (hardware controlled).
  • After sending a byte and receiving an acknowledgment from the slave device, ensure to change to idle state.


ADC

  • 12-bit ADC: (Max 18 Channels)
  • ADC uses DMA to buffer the adc data.
  • A maximum of 500kps of sampling rate when using auto sampling mode.


Simple PWM (Output Compare Module)

  • The PWM module consists of 8 channels using the output compare module of dsPic.
  • These channels are locate at pin 46 (OC1), 49 (OC2), 50 (OC3), 51 (OC4), 52 (OC5), 53 (OC6), 54 (OC7), 55 (OC8). These pins are shared with port D.
  • The range of PWM freqeuencies obtainable is 2Hz to 15MHz (See Figure 6.3). Suggested range of operation is 2Hz to 120kHz. The relationship between resolution r and PWM frequency fPWM is given by:
        fPWM = fCY/(Prescale*10rlog(2))
Relationship of Resolution and PWM Frequency
Resolution (bit) Prescale=1 Prescale=8 Prescale=64 Prescale=256
1 15,000,000 1,875,000 234,375 58,594
2 7,500,000 937,500 117,188 29,297
3 3,750,000 468,750 58,594 14,648
4 1,875,000 234,375 29,297 7,324
5 937,500 117,188 14,648 3,662
6 468,750 58,594 7,324 1,831
7 234,375 29,297 3,662 916
8 117,188 14,648 1,831 458
9 58,594 7,324 916 229
10 29,297 3,662 458 114
11 14,648 1,831 229 57
12 7,324 916 114 29
13 3,662 458 57 14
14 1,831 229 29 7
15 916 114 14 4
16 458 57 7 2


Flash-emulated EEPROM

  • Using built-in functions __builtin_tblpage(), __builtin_tbloffset() to set special-purpose registers to access flash memory
  • Using assembly code to read and write flash memory.


DSP Library

  • Not POSIX compliant
  • Library functions in <dsp.h> include the following categories:
  1. Vector
  2. Window
  3. Matrix
  4. Filtering
  5. Transform
  6. Control

Data Types

  • Signed Fractional Value (1.15 data format)
    • Inputs and outputs of the dsp functions adopt 1.15 data format, which consumes 16 bits to represent values between -1 to 1-2-15 inclusive.
    • Bit<15> is a signed bit, positive = 0, negative = 1.
    • Bit<14:0> are the exponent bits e.
    • Positive value = 1 - 2-15*(32768 - e)
    • Negative value = 0 - 2-15*(32768 - e)
  • 40-bit Accumulator operations (9.31 data format)
    • The dsp functions use the 40 bits accumalators during arithmatic calculations.
    • Bit<39:31> are signed bits, positive = 0x000, negative = 0x1FF.
    • Bit<30:0> are exponent bits.
  • IEEE Floating Point Values
    • Fractional values can be converted to Floating point values using: fo = Fract2Float(fr); for fr = [-1, 1-2-15]
    • Floating point values can be converted to Fractional values using: fr = Float2Fract(fo); or fr = Q15(fo); for fo = [-1, 1-2-15]
    • Float2Fract() is same as Q15(), except having saturation control. When +ve >= 1, answer = 215-1 = 32767 (0x7FFF). When -ve < -1, answer = -215 = -32767 (0x8000)