Editing Passives

Jump to navigation Jump to search

Warning: You are not logged in. Your IP address will be publicly visible if you make any edits. If you log in or create an account, your edits will be attributed to your username, along with other benefits.

The edit can be undone. Please check the comparison below to verify that this is what you want to do, and then save the changes below to finish undoing the edit.

Latest revision Your text
Line 32: Line 32:
 
All capacitors are formed by having 2 conductors ( or plates ) connected to the two terminals of the capacitor.  The conductors are separated from each other by insulator, typically very thin.  Adding charge to one side forces like charge off the opposite plate because like charges repel.  The larger the plates and the closer together they are the less voltage it takes to force in the charge.  If the insulator ( called the dielectric ) is too thin it will be pierced by the charge and the capacitors becomes a conductor.  Typically the basic specifications for a capacitors are its capacitance and the maximum voltage that can be used without causing the dialectic to break down.
 
All capacitors are formed by having 2 conductors ( or plates ) connected to the two terminals of the capacitor.  The conductors are separated from each other by insulator, typically very thin.  Adding charge to one side forces like charge off the opposite plate because like charges repel.  The larger the plates and the closer together they are the less voltage it takes to force in the charge.  If the insulator ( called the dielectric ) is too thin it will be pierced by the charge and the capacitors becomes a conductor.  Typically the basic specifications for a capacitors are its capacitance and the maximum voltage that can be used without causing the dialectic to break down.
 
<BR>There are many diferent technologies for manufacturing capacitor each with its own advantages and disadvantages.
 
<BR>There are many diferent technologies for manufacturing capacitor each with its own advantages and disadvantages.
 +
<BR>Some capacitors manufactured between 1999 until today are made with bad electrolyte. Avoid these, see [[Capacitor plague]] for more info.
  
 
External Links
 
External Links
Line 43: Line 44:
 
=== Electrolytic ===
 
=== Electrolytic ===
 
In electrolytic capacitors the insulating layer is formed by electro chemical action between the plates and other chemicals in the capacitor.  This forms a very thin layer which allows large capacitance in a small package.  Typically this works for one polarity and not another so electrolytic capacitors are marked with their polarity.  There are some non-polarized electrolytics, but they are not common.
 
In electrolytic capacitors the insulating layer is formed by electro chemical action between the plates and other chemicals in the capacitor.  This forms a very thin layer which allows large capacitance in a small package.  Typically this works for one polarity and not another so electrolytic capacitors are marked with their polarity.  There are some non-polarized electrolytics, but they are not common.
 
Some electrolytic capacitors manufactured between 1999 until today are made with bad electrolyte. Avoid these, see [[capacitor plague]] for more info.
 
 
 
==== Aluminum ====
 
==== Aluminum ====
 
==== Tantalum ====
 
==== Tantalum ====

Please note that all contributions to OpenCircuits may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see OpenCircuits:Copyrights for details). Do not submit copyrighted work without permission!

Cancel Editing help (opens in new window)

Template used on this page: