Programming Tips
Revision as of 06:52, 26 August 2009 by DavidCary (talk | contribs) (→Auto baud rate detection: clarified (I hope))
Some programming tips for the DsPIC30F 5011 Development Board:
Contents
Memory Map for 5011
Type | Start Address | End Address | Size |
---|---|---|---|
Flash | 0x000000 | 0x00AFFF | 44K[1] |
+--Flash: Reset Vector | 0x000000 | 0x000003 | 4 |
+--Flash: Interrupt Vector Table | 0x000004 | 0x00007F | 124 |
+--Flash: Alternate Vector Table | 0x000084 | 0x0000FF | 124 |
+--Flash: User Program | 0x000100 | 0x00AFFF | 43.7K |
EEPROM | 0x7FFC00 | 0x7FFFFF | 1K[2] |
Programming Executive | 0x800000 | 0x8005BF | 1472 |
Unit ID | 0x8005C0 | 0x8005FF | 64 |
Config Registers | 0xF80000 | 0xF8000F | 16 |
Device ID | 0xFF0000 | 0xFF0003 | 4 |
[1] Each address is 16-bit wide. Every two addresses correspond to a 24-bit instruction. Each even address contains 2 valid bytes; each odd address contains 1 valid byte plus 1 phathom byte.
[2] Each address is 8-bit wide.
Data Location
Type | Description | Example |
---|---|---|
_XBSS(N) [1] | RAM Data in X-memory, aligned at N, no initilization | int _XBSS(32) xbuf[16]; |
_XDATA(N) [1] | RAM Data in X-memory, aligned at N, with initilization | int _XDATA(32) xbuf[] = {1, 2, 3, 4, 5}; |
_YBSS(N) [1] | RAM Data in Y-memory, aligned at N, no initilization | int _YBSS(32) ybuf[16]; |
_YDATA(N) [1] | RAM Data in Y-memory, aligned at N, with initilization | int _YDATA(32) ybuf[16] = {1, 2, 3, 4, 5}; |
__attribute__((space(const))) | Flash ROM data, constant, accessed by normal C statements, but 32K max. |
int i __attribute__((space(const))) = 10; |
__attribute__((space(prog))) | Flash ROM data, read/write by program space visibility window (psv) |
int i __attribute__((space(prog))); |
__attribute__((space(auto_psv))) | Flash ROM data, read by normal C statements, write by accessing psv |
int i __attribute__((space(auto_psv))); |
__attribute__((space(psv))) | Flash ROM data, read/write by (psv) | int i __attribute__((space(psv))); |
_EEDATA(N) [1] | ROM Data in EEPROM, aligned at N, read/write with psv | int _EEDATA(2) table[]={0, 1, 2, 3, 5, 8}; |
_PERSISTENT | RAM Data, data remain after reset | int _PERSISTENT var1, var2; |
_NEAR | RAM Data at near section | int _NEAR var1, var2; |
_ISR | Interrupt service rountine | void _ISR _INT0Interrupt(void); |
_ISRFAST | Fast interrupt service rountine | void _ISRFAST _T0Interrupt(void); |
- N must be a power of two, with a minimum value of 2.
Configuration Bits
- System clock source can be provided by:
- Primary oscillator (OSC1, OSC2)
- Secondary oscillator (SOSCO and SOSCI) with 32kHz crystal
- Internal Fast RC (FRC) oscillator at 7.37MHz (7372800Hz)
- Low-Power RC (LPRC) oscillator (Watchdog Timer) at 512 kHz.
- These clock sources can be incorporated with interal Phase-locked-loop (PLL) x4, x8 or x16 to yield the osciallator frequrence FOSC
- The system clock is divided by 4 to yield the internal instruction cycle clock, FCY=FOSC/4
- FRC with PLLx16 is used to achieve FCY=29.49MHz (29491200Hz or 30MIPS)
//The code (MACRO) below is to be placed at the top of program (before main) _FOSC(CSW_FSCM_OFF & FRC_PLL16); _FWDT(WDT_OFF); //Turn off Watchdog Timer _FBORPOR(PBOR_ON & BORV_27 & MCLR_DIS & PWRT_16); _FGS(CODE_PROT_OFF); //Disable Code Protection
Timer
- Each timer is 16-bit (i.e. counting from 0 to 65535).
- Timer 2 and 3 can be incorporated together to form a 32-bit timer.
- Prescale is the ratio between timer counts and system clock counts. Prescales of 1:1, 1:8, 1:64 and 1:256 are available.
- Timers may be used to implement free time clock or mesaure time.
Free Time Clock
- Let required time for ticking be PERIOD.
- Number of instruction cycles during PERIOD = PERIOD*FCY cycles
- Using a prescale of 1:x, the timer period count register = # of cycles/x
- e.g. PERIOD = 10ms; # of cycles = 10ms*30MHz = 300000 cylces; Using 1:64 Prescale, register setting = 300000/64 = 4688
void time_init(void){ TMR1 = 0; // Clear register PR1 = 4688; // Set period //============================================================ _T1IF = 0; // Clear interrupt flag _T1IE = 1; // Enable interrupts //============================================================ T1CONbits.TCS = 0; // Use internal clock source T1CONbits.TCKPS = 2; // Prescale Select 1:64 T1CONbits.TON = 1; // Start the timer } //******************************************************************** void _ISRFAST _T1Interrupt(void){ _T1IF = 0; // Clear interrupt flag //Place user code here }
Time Measurement
- To measure the time taken for action(), use the code below:
unsigned int measure_time(void){ PR3 = 0xFFFF; // Set counter to maximum _T3IF = 0; // Clear interrupt flag _T3IE = 0; // Disable interrupt T3CONbits.TON = 1; // Start the timer, TMR3 count up TMR3 = 0; //Clear TMR3 to start count up //==================================================== //Add code here to wait for something to happen action(); //==================================================== T3CONbits.TON = 0; //Stop the timer //==================================================== return (unsigned int) TMR3/FCY; //TMR/FCY yields the actual time }
Interrupt
- Registers are involved in Interrupts includes:
- Interrupt Flag Status (IFS0-IFS2) registers
- Interrupt Enable Control (IEC0-IEC2) registers
- Interrupt Priority Control (IPC0-IPC10) registers
- Interrupt Priority Level (IPL) register
- Global Interrupt Control (INTCON1, INTCON2) registers
- Interrupt vector (INTTREG) register
- User may assign priority level 0-7 to a specific interrupt using IPC. Setting priority to 0 disable a specific interrupt. Level 7 interrupt has the highest priority.
- Current priority level is stored in bit<7:5> of Status Register (SR). Setting Interrupt Priority Level (IPL) to 7 disables all interrupts (except traps).
- sti() and cli() can be defined to enable and disable global interrupts for time critical functions:
#define IPL ( 0x00e0 ) #define cli() SR |= IPL //Set IPL to 7 #define sti() SR &= ~IPL //Set IPL to 0 //============================================================ char adc_ioctl(unsigned char request, unsigned char* argp){ //... cli(); //Disable global interrupt for(;ch<=argp[0];ch++) adc_add_ch(argp[ch]); //Add adc channels sti(); //Enable global interrupt //... return 0; }
- dsPic30F has an errate note on the Interrupt Controller. When Nested Interrupt is turned on (NSTDIS=0 by default), a high priority interrupt negating a low priority interrupt may result in an Address Error.
- To work around the problem, it is suggested by Microchip to use the following MACRO to protect:
- the clearing of Interrput Flag
- the disabling of Interrupt Enable
- the lowering of Interrupt Priority
- the modification of IPL in Status Register to 1-6
#define DISI_PROTECT(X) { \ __asm__ volatile ("DISI #0x1FFF");\ X; \ DISICNT = 0; \ }
- For example,
void _ISR _T1Interrupt( void ) { DISI_PROTECT(IFS0bits.T1IF = 0); //do something here... }
UART
- 5011 provides two UART channels UxART, for x=1, 2.
- UxMODE, UxSTA, UxBRG are registers used to set the mode, indicate the status, and set the baud rate respectively.
- For UART communications compatiable with RS232 standard, an external driver (e.g. MAX3232ESE) is needed.
- For UART communications compatiable with RS485 standard, an external driver (e.g. DS3695N) is needed.
Auto baud rate detection
- The method is provided by ingenia bootloader.
- The PC sends a ASCII character 'U' (0x55) to the target board.
- On the first rising edge of the start bit, the target board starts the timer.
- At the fifth rising edge, the timer is stopped, let the count number be t_count.
- The measured period corresponds to 8 bits transmitted at a baud rate uxbrg.
_ _ _ _ _ _ _|S|_|1|_|1|_|1|_|1|_|S|_ (S = Start Bit) | | |<------------->| Measured Time
- The relationship between uxbrg and TMR is
Measured Time (in seconds) = t_count/Fcy uxbrg = 1/(Measured Time/8) = 8*Fcy/t_count
- Since UxBRG is computed by:
UxBRG = (Fcy/(16*Baudrate)) -1 = (Fcy/(16*8*Fcy/t_count)) -1 = t_count/128 -1
- The following is the code for auto baud rate detection for U2ART:
unsigned int uart2_autobaud(void){ U2MODEbits.ABAUD = 1; //Enable Autobaud detect from U2RX (from IC2 if 0) U2MODEbits.UARTEN = 1; //U2ART enable //Timer 3 Config========================================================== PR3 = 0xFFFF; // Set counter to maximum _T3IF = 0; // Clear interrupt flag _T3IE = 0; // Disable interrupt T3CONbits.TON = 1; // Start the timer, TMR3 count up //Input Capture Config==================================================== IC2CONbits.ICM = 3; //Detect rising _IC2IF = 0; //Clear interrupt flag _IC2IE = 0; //Disable interrupt //Start Auto baud detection=============================================== unsigned int i=0; cli(); //Disable Global Interrupt while(!_IC2IF); //1st rising edge detected TMR3 = 0; //Clear TMR3 to start count up _IC2IF = 0; //Clear interrupt flag while(!_IC2IF); //2nd rising edge detected _IC2IF = 0; //Clear interrupt flag while(!_IC2IF); //3rd rising edge detected _IC2IF = 0; //Clear interrupt flag while(!_IC2IF); //4th rising edge detected _IC2IF = 0; //Clear interrupt flag while(!_IC2IF); //5th rising edge detected _IC2IF = 0; //Clear interrupt flag T3CONbits.TON = 0; //Stop the timer sti(); //Enable Global Interrupt //Compute value for BRG register========================================== unsigned int time; time = ((TMR3+0x40)>>7)-1; //+0x40 for rounding //======================================================================== return time; }
- For 30MIP, tested speeds of transmission include 9600bps, 19200bps, 28800bps, 38400bps and 57600bps.
open()
- The following structures and variables are used as circular buffers for transmit and receive.
struct UART_Rx{ unsigned char wr; unsigned char rd; }; struct UART_Tx{ unsigned char wr; unsigned char rd; unsigned char tx_complete_flag; }; struct UART_Rx uart_rx; struct UART_Tx uart_tx; unsigned char uart_rx_buf[MAX_UART_RX_BUF]; unsigned char uart_tx_buf[MAX_UART_TX_BUF];
char uart_open() { uart_rx.wr = 0; uart_rx.rd = 0; uart_tx.wr = 0; uart_tx.rd = 0; uart_tx.tx_complete_flag = 1; uart2_init(); return 0; }
void uart2_init(void){ unsigned int u2brg = 97; #if(AUTO_BAUD_DECT>0) u2brg = uart2_autobaud(); #endif U2BRG = u2brg; //================================================================= // Disable U2ART U2MODEbits.UARTEN = 0; //Disable U2ART module //================================================================= // Configure Interrupt Priority _U2RXIF = 0; //Clear Rx interrupt flags _U2TXIF = 0; //Clear Tx interrupt flags _U2RXIE = 1; //Receive interrupt: 0 disable, 1 enable _U2TXIE = 1; //Transmit interrupt: 0 disable, 1 enable //================================================================= // Configure Mode // +--Default: 8N1, no loopback, no wake in sleep mode, continue in idle mode // +--Diable autobaud detect // +--Enable U2ART module U2MODEbits.ABAUD = 0; //Disable Autobaud detect from U2RX U2MODEbits.UARTEN = 1; //U2ART enable //================================================================= // Configure Status // +--Default: TxInt when a char is transmitted, no break char // +--Default: RxInt when a char is received, no address detect, clear overflow // +--Enable Transmit U2STAbits.UTXEN = 1; //Tx enable }
write()
- This function writes a series of bytes to the circular buffer and start transmission.
int uart_write(unsigned char *buf, int count) { //If transimt has not completed, return busy if(uart_tx.tx_complete_flag == 0){ return -1; } else{ uart_tx.tx_complete_flag = 0; } int next_data_pos; int byte = 0; for (; byte<count; byte++) { next_data_pos = pre_wr_cir254buf( (unsigned char)uart_tx.wr, (unsigned char)uart_tx.rd, MAX_UART_TX_BUF); if (next_data_pos!=255) { //Valid data is available uart_tx_buf[uart_tx.wr] = (unsigned char) buf[byte]; //copy the char to tx_buf uart_tx.wr = next_data_pos; //increment the ptr } else break; } //Raise Interrupt flag to initiate transmission _U2TXIF = 1; //Start interrupt return byte; }
- The interrupt routine reads from the circular buffer and send the data. The uart is opened such that the module will generate an TX Interrupt when it a byte is sent.
void _ISR _U2TXInterrupt(void){ DISI_PROTECT(_U2TXIF = 0); //Clear Interrupt Flag unsigned char next_data_pos; next_data_pos = pre_rd_cir254buf( (unsigned char)uart_tx.wr, (unsigned char)uart_tx.rd, MAX_UART_TX_BUF); if (next_data_pos!= 255) { //Valid Data is available to transmit U2TXREG = (uart_tx_buf[(unsigned char)uart_tx.rd] & 0xFF); //send next byte... uart_tx.rd = (unsigned char) next_data_pos; //update rd pointer } else { //Transimission has completed uart_tx.tx_complete_flag = 1; // change to empty of tx } }
read()
- The interrupt routine writes to the circular buffer when space is available.
void _ISR _U2RXInterrupt(void){ unsigned char next_data_pos; if ( U2STAbits.URXDA ){ next_data_pos = pre_wr_cir254buf( uart_rx.wr, uart_rx.rd, MAX_UART_RX_BUF); if (next_data_pos!=255) { //If buffer is not full uart_rx_buf[uart_rx.wr] = (unsigned char) U2RXREG; //Read the data from buffer uart_rx.wr = next_data_pos; } else{ //When buffer is full, still remove data from register, butthe incoming data is lost next_data_pos = (unsigned char) U2RXREG; //Read the data from buffer } } DISI_PROTECT(_U2RXIF = 0); //Clear the flag }
- This function reads one byte from the circular buffer.
int uart_read(unsigned char *buf) { int next_data_pos; next_data_pos = pre_rd_cir254buf( uart_rx.wr, uart_rx.rd, MAX_UART_RX_BUF); //Copy 1 byte when data is available if (next_data_pos!=255) { *buf = uart_rx_buf[uart_rx.rd]; //copy the stored data to buf uart_rx.rd = next_data_pos; //update the ptr return 1; } //No data can be copied else { return 0; } }
I2C
- Two lines are devoted for the serial communication. SCL for clock, SDA for data.
- Standard communication speed includes
- Standard speed mode: 100kHz
- Fast speed mode: 400kHz
- High speed mode: 3.4MHz
- dsPIC30f5011 supports standard and fast speed modes. The maximum speed attainable is 1MHz.
- Pull-up resistors are required for both SCL and SDA. Minimum pull-up resistance is given by:
Pull-up resistor (min) = (Vdd-0.4)/0.003 ...... [See section 21.8 in Family reference manual]
- 2.2Kohm is typical for standard speed mode.
- After initiating a start/stop/restart bit, add a small delay (e.g. no operation) before polling the corresponding control bit (hardware controlled).
- After sending a byte and receiving an acknowledgement from the slave device, ensure to change to idle state.
open()
- The following structure is used to record whether special bits are needed to be sent.
typedef union{ unsigned char val; struct{ unsigned START:1; //start unsigned RESTART:1; //restart unsigned STOP:1; //stop unsigned NACK:1; //not acknowledgment unsigned :1; unsigned :1; unsigned :1; unsigned :1; }bits; } I2C_STATUS; static I2C_STATUS i2c_status;
- Initializing I2C with default speed I2C_BRG without interrupts.
void i2c_open(void) { //Open i2c if not already opened if(I2CCONbits.I2CEN == 0) { _SI2CIF = 0; //Clear Slave interrupt _MI2CIF = 0; //Clear Master interrupt _SI2CIE = 0; //Disable Slave interrupt _MI2CIE = 0; //Disable Master interrupt I2CBRG = I2C_BRG; I2CCONbits.I2CEN = 1; //Enable I2C module i2cIdle(); //I2C bus at idle state, awaiting transimission i2c_status.val = 0; //clear status flags } }
ioctl()
- Use this function before read/write to append special bits before or after the data byte.
char i2c_ioctl(unsigned char request, unsigned char* argp) { switch(request){ case I2C_SET_STATUS: i2c_status.val = *argp; break; default: return -1; //request code not recognised } return 0; }
write()
- This function sends an 8-bit data using the I2C protocol.
Mst/Slv _______ M ____M___ S M ________ SDA (Data) |S| data |A|S| |T| |C|T| |A|XXXXXXXX|K|P|
- Use ioctl() to select whether a start/restart/stop bit is required.
- If slave does not respond after ACK_TIMEOUT, the transmission is considered unsucessful.
int i2c_write(unsigned char *buf) { unsigned int count = 0; if(i2c_status.bits.START) { I2CCONbits.SEN = 1; Nop(); //A small delay for hardware to respond while(I2CCONbits.SEN); //Wait till Start sequence is completed } else if(i2c_status.bits.RESTART) { I2CCONbits.RSEN = 1; Nop(); //A small delay for hardware to respond while(I2CCONbits.RSEN); //Wait till Start sequence is completed } I2CTRN = *buf; //Transmit register while(I2CSTATbits.TBF); //Wait for transmit buffer to empty while(I2CSTATbits.ACKSTAT){ if(++count > ACK_TIMEOUT){ //Slave did not acknowledge, byte did not transmit sucessfully, //send stop bit to reset i2c I2CCONbits.PEN = 1; Nop(); //A small delay for hardware to respond while(I2CCONbits.PEN); //Wait till stop sequence is completed i2cIdle(); return 0; } } i2cIdle(); if(i2c_status.bits.STOP) { I2CCONbits.PEN = 1; Nop(); //A small delay for hardware to respond while(I2CCONbits.PEN); //Wait till stop sequence is completed i2cIdle(); } i2c_status.val = 0; //Clear status return 1; }
read()
- This function reads 1 byte from slave using the I2C protocol.
Mst/Slv ____ ___S____ M M _____ SDA (Data) | data |A|S| | |C|T| |XXXXXXXX|K|P|
- Use ioctl() to select whether an ACK/NACK and/or STOP bit is needed to be sent.
int i2c_read(unsigned char *buf) { I2CCONbits.RCEN = 1; //Enable Receive while(I2CCONbits.RCEN); I2CSTATbits.I2COV = 0; //Clear receive overflow *buf = (unsigned char) I2CRCV; //Access the receive buffer I2CCONbits.ACKDT = (i2c_status.bits.NACK)? 1 : 0; I2CCONbits.ACKEN = 1; //Send Acknowledgement/Not Acknowledgement i2cIdle(); //I2C bus at idle state, awaiting transimission if(i2c_status.bits.STOP) { I2CCONbits.PEN = 1; Nop(); //A small delay for hardware to respond while(I2CCONbits.PEN); //Wait till stop sequence is completed i2cIdle(); } i2c_status.val = 0; //Clear status return 1; }
Example
Mst/Slv _______ M ___M___ M S ____M___ S M ___M___ M S ___S____ M ___S____ M M _____ SDA (Data) |S| | |A| |A|R| | |A| |A| |N|S| |T|address|W|C|channelA|C|E|address|R|C| Data H |C| Data L |A|T| |A|1001111|0|K|00010010|K|S|1001111|1|K|10101010|K|10XXXXXX|K|P|
/* * Send start bit, slave address (Write Mode) */ status = I2C_START; i2c_ioctl(I2C_SET_STATUS, &status); data = (unsigned char) I2C_SLAVE_ADDR; i2c_write(&data); /* * Send control byte: Channel select */ data = (unsigned char) ctrl_byte; i2c_write(&data); /* * Send restart bit, slave address (Read Mode) */ status = I2C_RESTART; i2c_ioctl(I2C_SET_STATUS, &status); data = (unsigned char) (I2C_SLAVE_ADDR|0x01); i2c_write(&data); /* * Receive High Byte with Acknowledgment */ i2c_read(&data); usr_data.high = (unsigned char) data; /* * Receive Low Byte with Not Acknowledgment and stop bit */ status = I2C_NACK | I2C_STOP; i2c_ioctl(I2C_SET_STATUS, &status); i2c_read(&data); usr_data.low = (unsigned char) data;
ADC
- 12-bit ADC: (Max 16 Channels)
- Allow a maximum of 2 sets of analog input multiplexer configurations, MUX A and MUX B (Normally use one only).
- A maximum of 200kps of sampling rate when using auto sampling mode.
open()
- The following variables are required.
unsigned int adc_buf[ADC_MAX_CH]; //Store most updated data volatile unsigned int* ADC16Ptr = &ADCBUF0; //Pointer to ADC register buffer, unsigned char adc_ch_select = 0; //Pointer to channel to be read from unsigned char adc_data_ready = 0; //Indicate if RAM data is ready for output
- Configuration is highlighted below.
- Interrupt: The ADC module will be set to interrupt when the specified channels are updated.
- I/O: Set the corresponding TRISBX bits (digit i/o config) to input (i.e. = 1), and set corresponding bits in ADPCFG (analog config) to zero.
- Scanning Mode: Scan mode is used. In this mode, the Sample and Hold (S/H) is switched between the channels specified by ADCSSL (Scan select register).
- Reference Voltage for S/H: Only MUX A is used. By default, the negative reference voltage of the S/H is connected to VREF-.
- Settings for ADC Operation: For 200kbps operation, the voltage references for the ADC voltage are connected to VREF+ and VREF-. Scan input is enabled, and the module will generate an interrupt when all selected channels have been scanned.
- Sampling Rate: TAD refers to the time unit for the ADC clock. To configure the ADC module at 200kbps, the minimum sampling time of 1TAD = 334ns is required. ADCS<5:0> in ADCON3 register is used to set the time, which is given by:
ADCS<5:0> = 2(TAD/TCY)-1 = 2(334e-9/33.34e-9)-1 = 19
char adc_open(int flags) { // Configure interrupt _ADIF = 0; //clear ADC interrupt flag _ADIE = 1; //enable adc interrupt // Configure analog i/o _TRISB0 = 1; _TRISB1 = 1; ADPCFG = 0xFFFC; //Enable AN0 (Vref+) and AN1 (Vref-) // Configure scan input channels ADCSSL = 0x0003; //0 => Skip, 1 => Scan // Configure CH0 Sample and Hold for 200kbps // +-- Use MUX A only // +-- Set CH0 S/H -ve to VRef- ADCHSbits.CH0NA = 0; // ADCCON3: // +--Auto Sample Time = 1TAD // +--A/D Conversion Clock Source = system clock // +--A/D Conversion Clock Select ADCS<5:0>= 2(TAD/TCY)-1 // 200kbps(Sampling frequency) ADCON3bits.SAMC = ADC_ACQ_TIME; //1TAD for sampling time ADCON3bits.ADRC = 0; //Use system clock ADCON3bits.ADCS = ADC_ADCS; //each conversion requires 14TAD // ADCCON2: // +--Default: Use MUX A, No splitting of Buffer // +--Voltage Reference Configuration Vref+ and Vref- // +--Scan Input Selections // +--5 samples between interrupt ADCON2bits.VCFG = 3; //External Vref+, Vref- ADCON2bits.CSCNA = 1; //Scan input ADCON2bits.SMPI = 1; //take 2 samples (one sample per channel) per interrupt // ADCCON1: // +--Default: continue in idle mode, integer format // +--Enable ADC, Conversion Trigger Source Auto, Auto sampling on ADCON1bits.FORM = 0; //[0:integer]; [2 fractional]; [3 siged fractional] ADCON1bits.SSRC = 7; //auto covert, using internal clock source ADCON1bits.ASAM = 1; //auto setting of SAMP bit ADCON1bits.ADON = 1; //Turn on module return 0; }
read()
- 16 registers (ADCBUF0 -ADCBUF15) are dedicated to store the ADC data between interrupts. However, the data in ADCBUFx does not necessarily correspond to the data taken for channel x. Since the lowest register will always be filled first, when some of the channels are not scanned (i.e. skipped), care must be taken. The following code checks the ADCSSL register for the current scanning channels and moves the data to the corresponding position in *adc_buf.
void _ISR _ADCInterrupt(void){ unsigned int channel = 0; unsigned int buffer = 0; for (; channel<ADC_MAX_CH; channel++) { if(select(channel)) //Check if channel has been selected { adc_buf[channel] = ADC16Ptr[buffer]; //Copy data to adc_buf buffer++; } } adc_data_ready = 1; DISI_PROTECT(_ADIF = 0); //Clear adc interrupt }
static unsigned char select(unsigned char ch) { unsigned int mask; mask = 0x0001 << ch; if(ADCSSL & mask) return 1; return 0; }
- User can read from the buffer at anytime to get the most updated analog values.
int adc_read(unsigned int* buf, int count) { if(adc_data_ready == 1) { int num_channel = count/2; //number of channels to read unsigned char channel = adc_ch_select; //index for adc_buf int i = 0; //index for buf while(i<num_channel && channel<ADC_MAX_CH) { //Loop only for specified number of channel or all channels buf[i++] = adc_buf[channel++]; //use data in local buffer while(select(channel)==0) { //increment to next valid channel channel++; if(channel >= ADC_MAX_CH) break; } } return 2*i; } return -1; }
ioctl()
- This function is used to add or remove channels from the ADC scanning process.
char adc_ioctl(unsigned char request, unsigned char* argp) { switch(request) { case ADC_ADD_CH: //ADD channels to current set========================== cli(); //Disable global interrupt if(select(argp[0]) == 0){ //If channel not in scan list adcAdd(argp[0]); //Add individual channel to scan list adc_data_ready = 0; //First data not ready yet, until interrupt occurs } adc_ch_select = argp[0]; //Select current channel for reading sti(); //Enable global interrupt break; case ADC_RM_CH: //REMOVE channels from current set========================== cli(); //Disable global interrupt if(select(argp[0])){ //If channel in scan list adcRm(argp[0]); //Remove individual channel adc_ch_select = 0; //Reset to AN0 } sti(); //Enable global interrupt break; default: return -1; //request code not recognised } return 0; }
- Channels may be added or removed by changing _TRISBX, ADPCFG, ADCSSL and ADCON2bits.SMPI.
void adc_add_ch(unsigned char ch){ unsigned int mask; mask = 0x0001 << ch; TRISB = TRISB | mask; ADCSSL = ADCSSL | mask; ADPCFG = ~ADCSSL; ADCON2bits.SMPI++; //take one more sample per interrupt }
void adc_rm_ch(unsigned char ch){ unsigned int mask; mask = 0x0001 << ch; ADPCFG = ADPCFG | mask; ADCSSL = ~ADPCFG; ADCON2bits.SMPI--; //take one less sample per interrupt }
EEPROM
- 5011 has 1024 bytes of EEPROM, readable and writable under normal voltage (5V).
- To use, declare:
unsigned char _EEDATA(2) eeData[1024]={ 0x00, 0x00, 0x00, 0x00, .... } unsigned int byte_pointer = 0;
lseek()
- This function moves the pointer to the desired position before a reading/writing operation is performed.
int eeprom_lseek(int offset, unsigned char whence){ byte_pointer = offset; return byte_pointer; }
read()
- This function read count bytes from the eeprom.
int eeprom_read(unsigned char* buf, int count){ int i=0; for(; i<count && byte_pointer < 1024; i++){ readEEByte( __builtin_tblpage(eeData), __builtin_tbloffset(eeData) + byte_pointer, &buf[i]); byte_pointer++; //Update global pointer } return i; //read i bytes successful }
- readEEByte() is implemented in assembly code as follows:
.global _readEEByte _readEEByte: push TBLPAG ;w0 = base of eeData mov w0, TBLPAG ;w1 = offset for eeData in byte tblrdl.b [w1], [w2] ;w2 = pointer to user buffer pop TBLPAG return
write()
- This function write count bytes to eeprom.
int eeprom_write(unsigned char* buf, int count){ char isOddAddr = byte_pointer%2; //current address is odd char isOddByte = count%2; //number of bytes to write is odd //================================================================= unsigned int word_offset = byte_pointer>>1; //div by 2 and round down int max_write; max_write = (isOddAddr == 0 && isOddByte == 0) ? (count>>1) : (count>>1)+1; //================================================================= unsigned int word_data; //Store word to be written int byte_wr = 0; //number of bytes written, i.e buffer pointer int i = 0; //================================================================= for(; i<max_write && word_offset<512; i++, word_offset++){ if(i==0 && isOddAddr){ //First byte not used //============================================save first byte readEEByte( __builtin_tblpage(eeData), __builtin_tbloffset(eeData) + byte_pointer - 1, &word_data); //=========================================================== word_data = ((unsigned int)buf[0] << 8) + (0xFF & word_data); byte_wr++; //Update buffer pointer byte_pointer++; //Update global pointer } else if(i==max_write-1 && ((isOddAddr && sOddByte==0)||(isOddAddr==0 && isOddByte))){ //Last byte not used //=============================================save last byte readEEByte( __builtin_tblpage(eeData), __builtin_tbloffset(eeData) + byte_pointer + 1, &word_data); //============================================================ word_data = (word_data << 8) + buf[byte_wr]; byte_wr++; //Update buffer pointer byte_pointer++; //Update global pointer } else{ //Both bytes valid word_data = ((unsigned int)buf[byte_wr+1] << 8) + buf[byte_wr]; byte_wr+=2; //Update buffer pointer byte_pointer+=2; //Update global pointer } //================================================================== eraseEEWord( __builtin_tblpage(eeData), __builtin_tbloffset(eeData) + 2*word_offset); writeEEWord( __builtin_tblpage(eeData), __builtin_tbloffset(eeData) + 2*word_offset, &word_data); //================================================================== } return byte_wr; //No. of byte written }
- eraseEEWord and writeEEWord are implemented in assembly.
.global _eraseEEWord _eraseEEWord: push TBLPAG mov w0, NVMADRU ;w0 = base of eeData mov w1, NVMADR ;w1 = offset for eeData in word mov #0x4044, w0 mov w0, NVMCON ;Set to erase operation push SR ;Disable global interrupts mov #0x00E0, w0 ior SR mov #0x55, w0 ;Write the KEY sequence mov w0, NVMKEY mov #0xAA, w0 mov w0, NVMKEY bset NVMCON, #15 ;Start the erase cycle, bit 15 = WR nop nop L1: btsc NVMCON, #15 ;while(NVMCONbits.WR) bra L1 clr w0 pop SR ;Enable global interrupts pop TBLPAG return
.global _writeEEWord _writeEEWord: push TBLPAG ;w0 = base of eeData mov w0, TBLPAG ;w1 = offset for eeData in byte tblwtl [w2], [w1] ;w2 = pointer to user buffer mov #0x4004, w0 ;Set to write operation MOV w0, NVMCON push SR ;Disable global interrupts mov #0x00E0, w0 ior SR mov #0x55, w0 ;Write the KEY sequence mov w0, NVMKEY mov #0xAA, w0 mov w0, NVMKEY bset NVMCON, #15 ;Start the erase cycle, bit 15 = WR nop nop L2: btsc NVMCON, #15 ;while(NVMCONbits.WR) bra L2 clr w0 pop SR ;Enable global interrupts pop TBLPAG return
Simple PWM (Output Compare Module)
- The PWM module consists of 8 channels using the output compare module of dsPic.
- These channels are locate at pin 46 (OC1), 49 (OC2), 50 (OC3), 51 (OC4), 52 (OC5), 53 (OC6), 54 (OC7), 55 (OC8). These pins are shared with port D.
- The range of PWM freqeuencies obtainable is 2Hz to 15MHz (See Figure 6.3). Suggested range of operation is 2Hz to 120kHz. The relationship between resolution r and PWM frequency fPWM is given by:
fPWM = fCY/(Prescale*10rlog(2))
Resolution (bit) | Prescale=1 | Prescale=8 | Prescale=64 | Prescale=256 |
---|---|---|---|---|
1 | 15,000,000 | 1,875,000 | 234,375 | 58,594 |
2 | 7,500,000 | 937,500 | 117,188 | 29,297 |
3 | 3,750,000 | 468,750 | 58,594 | 14,648 |
4 | 1,875,000 | 234,375 | 29,297 | 7,324 |
5 | 937,500 | 117,188 | 14,648 | 3,662 |
6 | 468,750 | 58,594 | 7,324 | 1,831 |
7 | 234,375 | 29,297 | 3,662 | 916 |
8 | 117,188 | 14,648 | 1,831 | 458 |
9 | 58,594 | 7,324 | 916 | 229 |
10 | 29,297 | 3,662 | 458 | 114 |
11 | 14,648 | 1,831 | 229 | 57 |
12 | 7,324 | 916 | 114 | 29 |
13 | 3,662 | 458 | 57 | 14 |
14 | 1,831 | 229 | 29 | 7 |
15 | 916 | 114 | 14 | 4 |
16 | 458 | 57 | 7 | 2 |
open()
- A timer (either Timer 2 or 3) is needed to determine the pwm period. The following code uses timer 2 for all 8 channels.
void pwm_open(void){ OC1CON = 0; OC2CON = 0; //Disable all output compare modules OC3CON = 0; OC4CON = 0; OC5CON = 0; OC6CON = 0; OC7CON = 0; OC8CON = 0; //============================================================ TMR2 = 0; // Clear register PR2 = 0xFFFF; // Set to Maximum //============================================================ _T2IF = 0; // Clear interrupt flag _T2IE = 0 // Enable interrupts //============================================================ T2CONbits.TCS = 0; // Use internal clock source T2CONbits.TCKPS = 0; // Prescale Select 1:1 //============================================================ T2CONbits.TON = 1; // Start the timer }
ioctl()
- User should select the channel and set the pwm period using the functions below before issuing the duty cycle:
char pwm_ioctl(unsigned char request, unsigned long* argp){ unsigned int value; unsigned char mask; switch(request){ case PWM_SET_PERIOD: return setPeriodNPrescale(argp[0]); case PWM_SELECT_CH: pwm_channel = argp[0]; mask = 0x01 << pwm_channel; pwm_status = pwm_status | mask; return 0; default: return -1; } } char setPeriodNPrescale(unsigned long value_ns){ unsigned long ans; unsigned long long numerator = (unsigned long long)value_ns*SYSTEM_FREQ_MHZ; int index= -1; unsigned long denominator; //------------------------------------------------- do{ denominator = (unsigned long)1000*pwm_prescale[++index]; ans = (unsigned long)(((long double)numerator/denominator) + 0.5) - 1; //round to nearest int } while(ans > 0x0000FFFF && index < 3); //------------------------------------------------- if(ans > 0x0000FFFF) return -1; //------------------------------------------------- T2CONbits.TON = 0; // Turn off the timer T2CONbits.TCKPS = index; // Change prescale factor PR2 = (unsigned int) ans; // Set to Maximum T2CONbits.TON = 1; // Turn on the timer //------------------------------------------------- return 0; }
write()
- User can change the duty cycle using the following functions
int pwm_write(unsigned long* buf){ if((pwm_status & (0x01 << pwm_channel)) == 0){ return -1; //Channel has not been enabled } switch(pwm_channel){ case 0: OC1RS = calcDCycle(buf[0]); OC1R = OC1RS; OC1CONbits.OCM = 6; //Simple PWM, Fault pin disabled break; case 1: OC2RS = calcDCycle(buf[0]); OC2R = OC2RS; OC2CONbits.OCM = 6; //Simple PWM, Fault pin disabled break; ... case 7: OC8RS = calcDCycle(buf[0]); OC8R = OC8RS; OC8CONbits.OCM = 6; //Simple PWM, Fault pin disabled break; default: return -1; } return 4; } unsigned int calcDCycle(unsigned long value_ns){ unsigned long long numerator = (unsigned long long)value_ns*SYSTEM_FREQ_MHZ; unsigned int index = T2CONbits.TCKPS; unsigned long denominator = (unsigned long)1000*pwm_prescale[index]; return (unsigned int)(((long double)numerator/denominator) + 0.5) - 1; //round to nearest int }
Propagration Delay
- PWM channels sharing the same timer will have their PWM signals synchronised (i.e. the HIGH state of the duty cycle are all triggered together).
- To introduced delay to the PWM signals, the signal from selected channels may be made to pass through a series of inverters (e.g. 74HC14D). This adds propagation delay to the signal.
- However, as propagration delay of logic gates depends on applied voltage, temperature and load capacitance, the accuracy is low and performance is poor. For accurate delay, delay lines may be used, but they are expensive.
3.3V | 5.0V | |||||
---|---|---|---|---|---|---|
Number of Gates | A | B | C | A | B | C |
2 | 21ns (10.5) | 23ns (11.5) | 22ns (11.0) | 15ns (7.5) | 14ns (7.0) | 14ns (7.0) |
4 | 45ns (11.3) | 46ns (11.5) | 46ns (11.5) | 30ns (7.5) | 30ns (7.5) | 30ns (7.5) |
6 | 69ns (11.5) | 70ns (11.7) | 72ns (12.0) | 45ns (7.5) | 46ns (7.7) | 47ns (7.8) |
[1] Data in specification for 4.5V: Typical 15ns, Maximum 25ns
[2] Data in specification for 6.0V: Typical 12ns, Maximum 21ns
DSP Library
- Library functions in <dsp.h> include the following categories:
- Vector
- Window
- Matrix
- Filtering
- Transform
- Control
Data Types
- Signed Fractional Value (1.15 data format)
- Inputs and outputs of the dsp functions adopt 1.15 data format, which consumes 16 bits to represent values between -1 to 1-2-15 inclusive.
- Bit<15> is a signed bit, positive = 0, negative = 1.
- Bit<14:0> are the exponent bits e.
- Positive value = 1 - 2-15*(32768 - e)
- Negative value = 0 - 2-15*(32768 - e)
- 40-bit Accumulator operations (9.31 data format)
- The dsp functions use the 40 bits accumalators during arithmatic calculations.
- Bit<39:31> are signed bits, positive = 0x000, negative = 0x1FF.
- Bit<30:0> are exponent bits.
- IEEE Floating Point Values
- Fractional values can be converted to Floating point values using: fo = Fract2Float(fr); for fr = [-1, 1-2-15]
- Floating point values can be converted to Fractional values using: fr = Float2Fract(fo); or fr = Q15(fo); for fo = [-1, 1-2-15]
- Float2Fract() is same as Q15(), except having saturation control. When +ve >= 1, answer = 215-1 = 32767 (0x7FFF). When -ve < -1, answer = -215 = -32767 (0x8000)
Build-in Library
- Some assembler operators can only be accessed by inline assembly code, for example,
- Manuipulation of accumulators A and B (add, sub, mul, divide, shift, clear, square)
- Bit toggling
- Access to psv (program space visiblity) page and offset
- Access to table instruction page and offset
- Built-in functions are written as C-like function calls to utilize these assembler operators.
Address Error
- Possible Causes
- Misuse of C pointers