Difference between revisions of "DsPIC30F 5011 Development Board"
Line 1,239: | Line 1,239: | ||
#Only program dsPIC30F5011 and dsPIC33FJ128GP306 devices (Developers may add your devices in source code). | #Only program dsPIC30F5011 and dsPIC33FJ128GP306 devices (Developers may add your devices in source code). | ||
#Protection against overwriting bootloader codes on devices. | #Protection against overwriting bootloader codes on devices. | ||
− | # | + | #Detection if application program does not have its reset() at user's code start address. |
===Special Consideration=== | ===Special Consideration=== |
Revision as of 02:37, 8 March 2007
Contents
- 1 Introduction
- 2 Programming Methods
- 3 IC Requirements
- 4 Development Environment
- 5 Software Architecture
- 6 Programming Tips
- 7 Bootloader Development
- 8 USB-RS232 Bridge
- 9 Programming the Device
- 10 Remote Access
- 11 Conversion to dsPIC33F Devices (Not Tested)
- 12 To Do List
Introduction
Features of dsPIC30F5011
- 2.5 to 5V
- Up to 30MIPs
- High current/sink source I/O pins: 25mA
- DSP Instruction Set
- Dual programming techniques: ICSP and RTSP
- UART: up to 2 modules
- I2C: up to 1Mbps
- 10-bit A/D, 1.1 Msps
- 12-bit A/D, 200 ksps
- 44K flash (66Kb), 4Kb RAM, 1Kb EEPROM
- No DAC
- Pin-to-pin compatible with other dsPICs
dsPic | Price US$ |
MIPs | Flash (kB) |
RAM (kB) |
EEPROM (kB) |
I/O | ADC 12-bit |
IC | OC | Motor Ctrl |
Timers | QEI | UART | SPI | I2C | CAN | Codec |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
30F5011 | 5.91 | 30 | 66 | 4 | 1 | 52 | 16 | 8 | 8 | 0 | 5x16bit 2x32bit |
0 | 2 | 2 | 1 | 2 | 1 |
30F6011A | 7.73 | 30 | 132 | 6 | 2 | 52 | 16 | 8 | 8 | 0 | 5x16bit 2x32bit |
0 | 2 | 2 | 1 | 2 | 0 |
30F6012A | 7.85 | 30 | 144 | 8 | 4 | 52 | 16 | 8 | 8 | 0 | 5x16bit 2x32bit |
0 | 2 | 2 | 1 | 2 | 1 |
33FJ128GP206 | 4.62 | 40 | 128 | 8 | 0 | 53 | 18 | 8 | 8 | 0 | 9x16bit 4x32bit |
0 | 2 | 2 | 1 | 0 | 1 |
33FJ128GP306 | 4.81 | 40 | 128 | 16 | 0 | 53 | 18 | 8 | 8 | 0 | 9x16bit 4x32bit |
0 | 2 | 2 | 2 | 0 | 1 |
33FJ128GP706 | 5.49 | 40 | 128 | 16 | 0 | 53 | 18 | 8 | 8 | 0 | 9x16bit 4x32bit |
0 | 2 | 2 | 2 | 2 | 1 |
33FJ128MC506 | 4.97 | 40 | 128 | 8 | 0 | 53 | 16 | 8 | 8 | 8 | 9x16bit 4x32bit |
1 | 2 | 2 | 2 | 1 | 0 |
33FJ128MC706 | 5.38 | 40 | 128 | 16 | 0 | 53 | 16 | 8 | 8 | 8 | 9x16bit 4x32bit |
1 | 2 | 2 | 2 | 1 | 0 |
33FJ256GP506 | 6.11 | 40 | 256 | 16 | 0 | 53 | 18 | 8 | 8 | 0 | 9x16bit 4x32bit |
0 | 2 | 2 | 2 | 1 | 1 |
Web Page
Forum
- Microchip: Official forum by Microchip
- MPLAB ICD 2: Subforum on ICD 2 programmer
- MPLAB IDE: Subforum on IDE
- MPLAB C30 Compiler, ASM30, Link30 forum: Subforum on C compiler. Refer to MPLAB C30 C Compiler User's Guide Chapter 3
- dsPIC30F Topics: Subformum on dsPIC30F
- GNUPIC: Discussion on PIC in Linux Systems
- HI-TECH Software Forum: Discussion on dsPICC, a C compiler developed by HI-TECH
- PICList: Discussion on older PIC systems (not dsPIC)
- PicKit: Discussion on PICkit/PICkit 2 programmers
- FreeRTOS Real Time Kernel: Open Discussion and Support on FreeRTOS
References
- dsPIC30F
- Family Overview
- Family Reference Manual: Contains detailed descriptions on dsPIC30F register definitions and example codes
- 5011 Data Sheet
- Flash Programming Specification
- Programmer Reference Manual
- dsPIC33F
- ICD2 Programmer
- MPLAB
- C30 Compiler
- MPLAB C30 C Compiler User's Guide: Contains commands for using pic30-elf-gcc
- 16-bit Language Tools Libraries: Contains summaries and examples of using DSP libraries, standard C libraries and device libraries
- MPLAB ASM30, MPLAB LINK30 and Utilities User's Guide
- dsPIC30F Language Tools Quick Reference Card
Programming Methods
- There are 2 programming methods: In-Circuit Serial Programming (ICSP) and Run-Time Self-Programming (RTSP)
- ICSP allows the devices to be programmed after being placed in a circuit board.
- RTSP allows the devices to be programmed when an embedded program is already in operation.
ICSP: External Programmer (ICD2)
- Two types of ICSP are available: ICSP and Enhanced ICSP. Both of them require setting MCLR# to VIHH (9V – 13.25V).
- Standard ICSP
- Use external programmer (e.g. MPLAB® ICD 2, MPLAB® PM3 or PRO MATE® II) only.
- Required low-level programming to erase, program and verify the chip.
- Slower, because codes are serially executed.
- Program memory can be erased using Normal-Voltage (4.5 – 5.5V) or Low-Voltage (2.5V – 4.5V).
- Enhanced ICSP
- Use external programmer and Programming Executive (PE).
- PE is stored in the on-chip memory.
- PE allows faster programming.
- PE can be downloaded to the chip by external programmer using the standard ICSP method.
- PE contains a small command set to erase, program and verify the chip, avoiding the need of low-level programming.
Hardware Interface
Pin Label | Function | Pin Number |
---|---|---|
MCLR# | Programming Enable | 7 |
VDD | Power Supply | 10, 26, 38, 57 |
VSS | Ground | 9, 25, 41, 56 |
PGC | Serial Clock | 17 |
PGD | Serial Data | 18 |
Product Name | Interface with PC | Interface with Device | Price (US) | Postage (US) | Total (US) |
---|---|---|---|---|---|
MPLAB® ICD 2 | USB or RS232 | 6-PIN RJ-12 connector | $159.99 | - | - |
Full Speed USB Microchip ICD2 Debugger and Programmer |
USB | 6-PIN ICSP connector 6-PIN RJ-12 connector |
$72.00 | $12.00 | $84.00 |
Mini Microchip Compatible ICD2 Debugger and Programmer |
RS232 | 6-PIN ICSP connector 6-PIN RJ-12 connector |
$45.00 | $10.00 | $55.00 |
ICDX30 | RS232 | 6-pin RJ-11 | $51.00 | $47.46 | $98.46 |
Clone Microchip ICD2 | USB | 6-pin flat cables | $30.00 | $12.00 | $42.00 |
Source | Schematic | PIC16F877A Bootloader |
---|---|---|
Patrick Touzet | Yes | HEX |
Nebadje | Yes | Zip |
Software Interface
- The program can be written and compiled in an Integrated Development Environment (IDE) using either Assembly or C. The complied codes are then loaded to the device through the external programmer.
Product Name | Features | OS | Price (US$) |
---|---|---|---|
MPLAB® IDE | Assembler Only | Windows | Free |
MPLAB® C30 | Assembler and C-Compiler | Windows | $895.00 (Free student version1) |
Piklab 0.12.0 | Assembler and C-Compiler | Linux | Free2 |
- Full-featured for the first 60 days. After 60 days only optimization level 1 can be enabled in the compiler. The compiler will continue to function after 60 days, but code size may increase.
- The current version supports external programmer ICD 2, but not yet tested.
RTSP: COM Port (Bootloader)
- RTSP works in normal voltage (MCLR# no need to raise to VIHH).
- No literature has mentioned the incorporation of Programming Executive (PE). Presumably, since Enhanced ICSP needs to set MCLR# to VIHH, RTSP cannot use PE.
- Refer to bootloader section.
IC Requirements
Part No. | Description | Min Temp | Max Temp | Min Volt | Max Volt | Typ Cur | Max Cur |
---|---|---|---|---|---|---|---|
dsPIC30F5011-30I/PT | uP | -40oC | 85oC | 2.5V [1] | 5.5V | 145mA | 217mA |
MAX3232ESE | RS232 driver | -40oC | 85oC | 3.0V | 5.5V | 0.3mA | 1.0mA |
DS3695N | RS485 driver | -40oC | 85oC | 4.75V | 5.25V | 42mA | 60mA |
DAC6574DGS | 10-bit Quad-DAC I2C | -40oC | 105oC | 2.7V | 5.5V | 0.6mA | 0.9mA |
74HC14D | Quad-Schmitt Trigger | -40oC | 125oC | 2.0V | 6.0V | 0.02mA | |
Overall | -40oC | 85oC | 4.75V | 5.25V | <300mA [2] | ||
dsPIC33FJ128GP306 | uP | -40oC | 85oC | 3.0V [1] | 3.6V | 74mA | 250mA |
ADM3485EARZ | RS485 driver | -40oC | 85oC | 3.0V | 3.6V | 1.1mA | 2.2mA |
- Minimum voltage measured is 3.3V (with 2 LEDs blinking) running at 30MHz.
- Measured current at 5V is 180mA (with 2 LEDs blinking only)
Development Environment
Windows
- C-Compiler, Assembler and Linker are under GNU license.
- MPLAB C30 C Compiler (*.c -> *.s)
- MPLAB ASM30 Assembler (*.s -> *.o)
- MPLAB LINK30 Linker (*.o -> *.bin)
- PA optimizer, simulator, runtime libraries, header files, include files, and linker scripts are not covered by GNU. Reference is here.
- Microchip has integrated ASM30, LINK30, assembly header files, linker scripts in MPLAB IDE, which is free for download.
- MPLAB C30 costs US$895. A 60-day free student version is also available. After 60-days, the optimizer is automatically disabled, while other tools can still function properly. Refer to Table 2.4.
- C-libraries contained in C30 includes (Refer to 16-Bit Language Tools Libraries from Microchip).
Library | Directory (\\Microchip\MPLAB C30) |
Major functions |
---|---|---|
DSP Library (e.g. libdsp-coff.a) |
\lib \src\dsp \support\h |
Vector, Matrix, Filter, etc. |
16-Bit Peripheral Libraries (e.g. libp30F5011-coff.a) |
\lib \src\peripheral \support\h |
ADC12, IOPort, UART, I2C, etc. |
Standard C Libraries (e.g. libc-coff.a, libm-coff.a, libpic-coff.a) |
\lib \src\libm \include |
stdio.h, time.h, float.h, math.h, |
MPLAB C30 Built-in Functions | none | _buildin_addab, _buildin_add, _buildinmpy, etc |
Linux
- C Compiler, Assembler and Linker are under GNU license.
- The code can be downloaded from Microchip at here.
- Current MPLAB ASM30 Assembler: v2.04
- Current MPLAB C30 Compiler: v2.04
- John Steele Scott has made templates that can be readily used by Debian-based systems. Someone at http://noel.feld.cvut.cz/dspic/ has done the necessary conversion to *.deb already.
- Download pic30-1.32-debian.tar.bz2 for Template v1.32. (For v2.01, please goto pic30-debian-2.01.tar.bz2).
- Download pic30-binutils_1.32-1_i386.deb for the assember.
- Download pic30-gcc_1.32-1_i386.deb for the compiler.
- Important Note: Only the compiler is free. The header files and library is owned by Microchip.
- Thomas Sailer suggested to download the Student version of C30 compiler and then build the libraries without source code. A package template for Fedora system is available here.
- Instructions for filling the upstream direction is available here.
- Alteratively, Stephan Walter has started a project to develop C Runtime Library for dsPIC.
- Current libraries in version 0.1.1 include: assert.h, cdefs.h, ctype.h, errno.h, inttypes.h, stdint.h, stdio.h, stdlib.h, string.h
- Burning Program Codes to Target Board
- Use 'dspicprg and dspicdmp' utilities developed by Homer Reid to burn hex code (*.hex) to devices. See Reference here. Through serial port only?
- Use Piklab IDE. Details on file format not known.
- Use MPLAB IDE to burn hex code (*.hex) to devices.
Code Optimization
- Code Optimization under GNU license supports O0 and O1 only.
- MPLAB C-Compiler supports O0, O1, O2, Os and O3. The Student version will disable O2, Os, and O3 after 60 days.
- Below is a comparsion between different optimization levels for the project including drivers for 2 projects.
Optimization | Description | Project 1 Code Size (byte) |
Project 1 Data Usage (byte) |
Project 2 Code Size (byte) |
Project 2 Data Usage (byte) |
---|---|---|---|---|---|
O0 | No optimization Fastest Compilation |
6222 (9%) | 178 (4%) | 26,037 (38%) | 710 (17%) |
O1 | Optimize Tries to reduce code size and execution time. |
4473 (6%) | 178 (4%) | 22,290 (32%) | 710 (17%) |
O2 | Optimize even more Performs nearly all supported optimizations that do not involve a space-speed trade-off. Increases both compilation time and the performance of the generated code. |
4422 (6%) | 178 (4%) | 21,993 (32%) | 710 (17%) |
O3 | Optimize yet more. O3 turns on all optimizations specified by O2 and also turns on the inline-functions option. |
4485 (6%) | 178 (4%) | 22,176 (32%) | 710 (17%) |
Os | Optimize for size. Os enables all O2 optimizations that do not typically increase code size. It also performs further optimizations designed to reduce code size. |
4356 (6%) | 178 (4%) | 21,885 (32%) | 710 (17%) |
Software Architecture
+----------+-----------+---------+---------+ | local | remote | | | +----------+-----------+ host | UI | | data access | channel | | | (DI,DO,AI,AO) | | | +----------------------+---------+---------+ | Application | | | +------------------------------------------+ | Applications Model | | +--------------+-----------+ | | | GUI | CLib | | | | +------+-----------+-------+ | | | Operating System | +-------+-------+--------------------------+ | Drivers | +------------------------------------------+ | Hardware | +------------------------------------------+
- Currently, operating system is based on linlike8. The possibility of using other OS (e.g. FreeRTOS) will be explored later.
- Software Drivers are to be developed to allow users at Application Level to use the hardware (e.g. ADC, DAC, UART, EEPROM) through the OS.
- The interface between the drivers and the OS should be compliant with POSIX standard for Linux (e.g. open(), write(), read(), ioctl() etc).
Programming Tips
Memory Map for 5011
Type | Start Address | End Address | Size |
---|---|---|---|
Flash | 0x000000 | 0x00AFFF | 44K[1] |
+--Flash: Reset Vector | 0x000000 | 0x000003 | 4 |
+--Flash: Interrupt Vector Table | 0x000004 | 0x00007F | 124 |
+--Flash: Alternate Vector Table | 0x000084 | 0x0000FF | 124 |
+--Flash: User Program | 0x000100 | 0x00AFFF | 43.7K |
EEPROM | 0x7FFC00 | 0x7FFFFF | 1K[2] |
Programming Executive | 0x800000 | 0x8005BF | 1472 |
Unit ID | 0x8005C0 | 0x8005FF | 64 |
Config Registers | 0xF80000 | 0xF8000F | 16 |
Device ID | 0xFF0000 | 0xFF0003 | 4 |
[1] Each address is 16-bit wide. Every two addresses correspond to a 24-bit instruction. Each even address contains 2 valid bytes; each odd address contains 1 valid byte plus 1 phathom byte.
[2] Each address is 8-bit wide.
Data Location
Type | Description | Example |
---|---|---|
_XBSS(N) [1] | RAM Data in X-memory, aligned at N, no initilization | int _XBSS(32) xbuf[16]; |
_XDATA(N) [1] | RAM Data in X-memory, aligned at N, with initilization | int _XDATA(32) xbuf[] = {1, 2, 3, 4, 5}; |
_YBSS(N) [1] | RAM Data in Y-memory, aligned at N, no initilization | int _YBSS(32) ybuf[16]; |
_YDATA(N) [1] | RAM Data in Y-memory, aligned at N, with initilization | int _YDATA(32) ybuf[16] = {1, 2, 3, 4, 5}; |
__attribute__((space(const))) | Flash ROM data, constant, accessed by normal C statements, but 32K max. |
int i __attribute__((space(const))) = 10; |
__attribute__((space(prog))) | Flash ROM data, read/write by program space visibility window (psv) |
int i __attribute__((space(prog))); |
__attribute__((space(auto_psv))) | Flash ROM data, read by normal C statements, write by accessing psv |
int i __attribute__((space(auto_psv))); |
__attribute__((space(psv))) | Flash ROM data, read/write by (psv) | int i __attribute__((space(psv))); |
_EEDATA(N) [1] | ROM Data in EEPROM, aligned at N, read/write with psv | int _EEDATA(2) table[]={0, 1, 2, 3, 5, 8}; |
_PERSISTENT | RAM Data, data remain after reset | int _PERSISTENT var1, var2; |
_NEAR | RAM Data at near section | int _NEAR var1, var2; |
_ISR | Interrupt service rountine | void _ISR _INT0Interrupt(void); |
_ISRFAST | Fast interrupt service rountine | void _ISRFAST _T0Interrupt(void); |
- N must be a power of two, with a minimum value of 2.
Configuration Bits
- System clock source can be provided by:
- Primary oscillator (OSC1, OSC2)
- Secondary oscillator (SOSCO and SOSCI) with 32kHz crystal
- Internal Fast RC (FRC) oscillator at 7.37MHz (7372800Hz)
- Low-Power RC (LPRC) oscillator (Watchdog Timer) at 512 kHz.
- These clock sources can be incorporated with interal Phase-locked-loop (PLL) x4, x8 or x16 to yield the osciallator frequrence FOSC
- The system clock is divided by 4 to yield the internal instruction cycle clock, FCY=FOSC/4
- FRC with PLLx16 is used to achieve FCY=29.49MHz (29491200Hz or 30MIPS)
//The code (MACRO) below is to be placed at the top of program (before main) _FOSC(CSW_FSCM_OFF & FRC_PLL16); _FWDT(WDT_OFF); //Turn off Watchdog Timer _FBORPOR(PBOR_ON & BORV_27 & MCLR_DIS & PWRT_16); _FGS(CODE_PROT_OFF); //Disable Code Protection
Timer
- Each timer is 16-bit (i.e. counting from 0 to 65535).
- Timer 2 and 3 can be incorporated together to form a 32-bit timer.
- Prescale is the ratio between timer counts and system clock counts. Prescales of 1:1, 1:8, 1:64 and 1:256 are available.
- Timers may be used to implement free time clock or mesaure time.
Free Time Clock
- Let required time for ticking be PERIOD.
- Number of instruction cycles during PERIOD = PERIOD*FCY cycles
- Using a prescale of 1:x, the timer period count register = # of cycles/x
- e.g. PERIOD = 10ms; # of cycles = 10ms*30MHz = 300000 cylces; Using 1:64 Prescale, register setting = 300000/64 = 4688
void time_init(void){ TMR1 = 0; // Clear register PR1 = 4688; // Set period //============================================================ _T1IF = 0; // Clear interrupt flag _T1IE = 1; // Enable interrupts //============================================================ T1CONbits.TCS = 0; // Use internal clock source T1CONbits.TCKPS = 2; // Prescale Select 1:64 T1CONbits.TON = 1; // Start the timer } //******************************************************************** void _ISRFAST _T1Interrupt(void){ _T1IF = 0; // Clear interrupt flag //Place user code here }
Time Measurement
- To measure the time taken for action(), use the code below:
unsigned int measure_time(void){ PR3 = 0xFFFF; // Set counter to maximum _T3IF = 0; // Clear interrupt flag _T3IE = 0; // Disable interrupt T3CONbits.TON = 1; // Start the timer, TMR3 count up TMR3 = 0; //Clear TMR3 to start count up //==================================================== //Add code here to wait for something to happen action(); //==================================================== T3CONbits.TON = 0; //Stop the timer //==================================================== return (unsigned int) TMR3/FCY; //TMR/FCY yields the actual time }
Interrupt
- Registers are involved in Interrupts includes:
- Interrupt Flag Status (IFS0-IFS2) registers
- Interrupt Enable Control (IEC0-IEC2) registers
- Interrupt Priority Control (IPC0-IPC10) registers
- Interrupt Priority Level (IPL) register
- Global Interrupt Control (INTCON1, INTCON2) registers
- Interrupt vector (INTTREG) register
- User may assign priority level 0-7 to a specific interrupt using IPC. Setting priority to 0 disable a specific interrupt. Level 7 interrupt has the highest priority.
- Current priority level is stored in IPL. Setting IPL to 7 disables all interrupts (except traps). The following MACROs are defined in <p30f5011.h>:
- SET_CPU_IPL(ipl): Set IPL to ipl
- SET_AND_SAVE_CPU_IPL(save_to, ipl): Store the current IPL to save_to and then set to ipl
- RESTORE_CPU_IPL(saved_to): Restore the previously saved ipl
- sti() and cli() are defined to enable and disable global interrupts for time critical functions:
extern int SAVE_IPL; #define sti() RESTORE_CPU_IPL(SAVE_IPL) #define cli() SET_AND_SAVE_CPU_IPL(SAVE_IPL, 7) //============================================================ char adc_ioctl(unsigned char request, unsigned char* argp){ //... cli(); //Disable global interrupt for(;ch<=argp[0];ch++) adc_add_ch(argp[ch]); //Add adc channels sti(); //Enable global interrupt //... return 0; }
UART
- 5011 provides two UART channels UxART, for x=1, 2.
- UxMODE, UxSTA, UxBRG are registers used to set the mode, indicate the status, and set the baud rate respectively.
- For UART communications compatiable with RS232 standard, an external driver (e.g. MAX3232ESE) is needed.
- For UART communications compatiable with RS485 standard, an external driver (e.g. DS3695N) is needed.
Auto baud rate detection
- The method is provided by ingenia bootloader.
- The PC sends a ASCII character 'U' (0x55) to the target board.
- On the first rising edge of the start bit, the target board starts the timer.
- At the fifth rising edge, the timer is stopped, let the count number be t_count.
- The measured period corresponds to 8 bits transmitted at a baud rate uxbrg.
_ _ _ _ _ _ _|S|_|1|_|1|_|1|_|1|_|S|_ (S = Start Bit) <---------------> Measured Time
- The relationship between uxbrg and TMR is
Measured Time (in seconds) = t_count/Fcy uxbrg = 1/(Measured Time/8) = 8*Fcy/t_count
- Since UxBRG is computed by:
UxBRG = (Fcy/(16*Baudrate)) -1 = (Fcy/(16*8*Fcy/t_count)) -1 = t_count/128 -1
- The following is the code for auto baud rate detection for U2ART:
unsigned int uart2_autobaud(void){ U2MODEbits.ABAUD = 1; //Enable Autobaud detect from U2RX (from IC2 if 0) U2MODEbits.UARTEN = 1; //U2ART enable //Timer 3 Config========================================================== PR3 = 0xFFFF; // Set counter to maximum _T3IF = 0; // Clear interrupt flag _T3IE = 0; // Disable interrupt T3CONbits.TON = 1; // Start the timer, TMR3 count up //Input Capture Config==================================================== IC2CONbits.ICM = 3; //Detect rising _IC2IF = 0; //Clear interrupt flag _IC2IE = 0; //Disable interrupt //Start Auto baud detection=============================================== unsigned int i=0; cli(); //Disable Global Interrupt while(!_IC2IF); //1st rising edge detected TMR3 = 0; //Clear TMR3 to start count up _IC2IF = 0; //Clear interrupt flag while(!_IC2IF); //2nd rising edge detected _IC2IF = 0; //Clear interrupt flag while(!_IC2IF); //3rd rising edge detected _IC2IF = 0; //Clear interrupt flag while(!_IC2IF); //4th rising edge detected _IC2IF = 0; //Clear interrupt flag while(!_IC2IF); //5th rising edge detected _IC2IF = 0; //Clear interrupt flag T3CONbits.TON = 0; //Stop the timer sti(); //Enable Global Interrupt //Compute value for BRG register========================================== unsigned int time; time = ((TMR3+0x40)>>7)-1; //+0x40 for rounding //======================================================================== return time; }
- For 30MIP, tested speeds of transmission include 9600bps, 19200bps, 28800bps, 38400bps and 57600bps.
Initialize UART
void uart2_init(void){ //================================================================= // Configure Baud rate // +-- Default Baud rate = 19.2 kbps // +-- U2BRG = 30e6 / (16 * 19200) - 1 = 97 unsigned int u2brg = 97; #if(AUTO_BAUD_DECT>0) u2brg = uart2_autobaud(); #endif U2BRG = u2brg; //================================================================= // Disable U2ART U2MODEbits.UARTEN = 0; //Disable U2ART module //================================================================= // Configure Interrupt Priority _U2RXIF = 0; //Clear Rx interrupt flags _U2TXIF = 0; //Clear Tx interrupt flags _U2RXIE = 1; //Receive interrupt: 0 disable, 1 enable _U2TXIE = 1; //Transmit interrupt: 0 disable, 1 enable //================================================================= // Configure Mode // +--Default: 8N1, no loopback, no wake in sleep mode, continue in idle mode // +--Diable autobaud detect // +--Enable U2ART module U2MODEbits.ABAUD = 0; //Disable Autobaud detect from U2RX U2MODEbits.UARTEN = 1; //U2ART enable //================================================================= // Configure Status // +--Default: TxInt when a char is transmitted, no break char // +--Default: RxInt when a char is received, no address detect, clear overflow // +--Enable Transmit U2STAbits.UTXEN = 1; //Tx enable }
Sending and Receiving Data
void _ISR _U2TXInterrupt(void){ _U2TXIF = 0; //Clear Interrupt Flag if(tx_data_ready()) U2TXREG = tx_buf[POS]; //send next byte... } void _ISR _U2RXInterrupt(void){ _U2RXIF = 0; //Clear the flag if ( U2STAbits.URXDA ){ rx_buf[POS] = (unsigned char) U2RXREG; //Read the data from buffer } }
I2C
- Two lines are devoted for the serial communication. SCL for clock, SDA for data.
- Standard communication speed includes
- Standard speed mode: 100kHz
- Fast speed mode: 400kHz
- High speed mode: 3.4MHz
- dsPIC30f5011 supports standard and fast speed modes. The maximum speed attainable is 1MHz.
- Pull-up resistors are required for both SCL and SDA. Minimum pull-up resistance is given by:
Pull-up resistor (min) = (Vdd-0.4)/0.003 ...... [See section 21.8 in Family reference manual]
- 2.2Kohm is typical for standard speed mode.
- After initiating a start/stop/restart bit, add a small delay (e.g. no operation) before polling the corresponding control bit (hardware controlled). For example:
StartI2C();
Nop(); //A small delay for hardware to respond
while(I2CCONbits.SEN); //Wait till Start sequence is completed
- After sending a byte and receiving an acknowledgement from the slave device, ensure to change to idle state. For example:
MasterWriteI2C(0x55);
while(I2CSTATbits.TBF); //Wait for transmit buffer to empty
while(I2CSTATbits.ACKSTAT); //Wait for slave acknowledgement
IdleI2C();
ADC
- 12-bit ADC: (Max 16 Channels)
- Allow a maximum of 2 sets of analog input multiplexer configurations, MUX A and MUX B (Normally use one only).
- A maximum of 200kps of sampling rate when using auto sampling mode.
Configuration
- Interrupt: Clear ADC interrupt flag and enable ADC interrupt. The ADC module will be set to interrupt when the specified channels are updated.
_ADIF = 0; //clear ADC interrupt flag _ADIE = 1; //enable adc interrupt
- I/O: Set the corresponding TRISBX bits (digit i/o config) to input (i.e. = 1), and set corresponding bits in ADPCFG (analog config) to zero.
_TRISB2 = 1; //Set AN2 [Case Temp] as analog input _TRISB8 = 1; //Set AN8 [Power detect 0] as analog input _TRISB9 = 1; //Set AN9 [Power detect 1] as analog input _TRISB10 = 1; //Set AN10 [Current detect 0] as analog input _TRISB11 = 1; //Set AN11 [Temp detect 0] as analog input ADPCFG = 0xF0FB; //0 => Analog, 1 => Digital
- Scanning Mode: Scan mode is used. In this mode, the Sample and Hold (S/H) is switched between the channels specified by ADCSSL (Scan select register).
ADCSSL = 0x0F04; //0 => Skip, 1 => Scan
- Reference Voltage for S/H: Only MUX A is used. By default, the negative reference voltage of the S/H is connected to VREF-.
ADCHSbits.CH0NA = 0;
- Sampling Rate: TAD refers to the time unit for the ADC clock. To configure the ADC module at 200kbps, the minimum sampling time of 1TAD = 334ns is required. ADCS<5:0> in ADCON3 register is used to set the time, which is given by:
ADCS<5:0> = 2(TAD/TCY)-1 = 2(334e-9/33.34e-9)-1 = 19
ADCON3bits.SAMC = 1; //1TAD for sampling time ADCON3bits.ADRC = 1; //Use internal ADC clock ADCON3bits.ADCS = 19; //Set TAD = 334ns
- Settings for ADC Operation: For 200kbps operation, the voltage references for the ADC voltage are connected to VREF+ and VREF-. Scan input is enabled, and the module will generate an interrupt when all selected channels have been scanned.
ADCON2bits.VCFG = 3; //External Vref+, Vref- ADCON2bits.CSCNA = 1; //Scan input ADCON2bits.SMPI = 4; //take 5 samples (one sample per channel) per interrupt
- More Settings for ADC Operation: Turn on the module, select the data output format as unsigned integer, and allow auto setting of SAMP bit (auto sampling).
ADCON1bits.ADON = 1; //Turn on module ADCON1bits.FORM = 0; //[2 fractional]; [3 siged fractional] ADCON1bits.SSRC = 7; //auto covert, using internal clock source ADCON1bits.ASAM = 1; //auto setting of SAMP bit
Storing ADC Data
- 16 registers (ADCBUF0 -ADCBUF15) are dedicated to store the ADC data between interrupts. However, the data in ADCBUFx does not necessarily correspond to the data taken for channel x. Since the lowest register will always be filled first, when some of the channels are not scanned (i.e. skipped), care must be taken. The following code checks the ADCSSL register for the current scanning channels and moves the data to the corresponding position in *adc_buf.
void _ISR _ADCInterrupt(void){ _ADIF = 0; //Clear adc interrupt //========================================================== unsigned char channel = 0; unsigned char buffer = 0; for (; channel<ADC_MAX_CH; channel++){ if(adc_ch_updated(channel)){ //Check if channel has updated adc_buf[channel] = ADC16Ptr[buffer]; //Copy data to adc_buf buffer++; } } } unsigned char adc_ch_updated(unsigned char ch){ unsigned int mask; mask = 0x0001 << ch; if(ADCSSL & mask) return 1; return 0; }
Adding and Removing Channels
- Channels may be added or removed by changing _TRISBX, ADPCFG, ADCSSL and ADCON2bits.SMPI.
void adc_add_ch(unsigned char ch){ unsigned int mask; mask = 0x0001 << ch; TRISB = TRISB | mask; ADCSSL = ADCSSL | mask; ADPCFG = ~ADCSSL; ADCON2bits.SMPI++; //take one more sample per interrupt } void adc_rm_ch(unsigned char ch){ unsigned int mask; mask = 0x0001 << ch; ADPCFG = ADPCFG | mask; ADCSSL = ~ADPCFG; ADCON2bits.SMPI--; //take one less sample per interrupt }
EEPROM
- 5011 has 1024 bytes of EEPROM, readable and writable under normal voltage (5V).
- To use, declare:
unsigned char _EEDATA(2) eeData[1024]={ 0x00, 0x00, 0x00, 0x00, .... } unsigned int byte_pointer = 0;
Seek
- This function moves the pointer to the desired position before a reading/writing operation is performed.
int eeprom_lseek(int offset, unsigned char whence){ byte_pointer = offset; return byte_pointer; }
Read
- This function read count bytes from the eeprom.
int eeprom_read(unsigned char* buf, int count){ int i=0; for(; i<count && byte_pointer < 1024; i++){ readEEByte( __builtin_tblpage(eeData), __builtin_tbloffset(eeData) + byte_pointer, &buf[i]); byte_pointer++; //Update global pointer } return i; //read i bytes successful }
- readEEByte() is implemented in assembly code as follows:
.global _readEEByte _readEEByte: push TBLPAG ;w0 = base of eeData mov w0, TBLPAG ;w1 = offset for eeData in byte tblrdl.b [w1], [w2] ;w2 = pointer to user buffer pop TBLPAG return
Write
- This function write count bytes to eeprom.
int eeprom_write(unsigned char* buf, int count){ char isOddAddr = byte_pointer%2; //current address is odd char isOddByte = count%2; //number of bytes to write is odd //================================================================= unsigned int word_offset = byte_pointer>>1; //div by 2 and round down int max_write; max_write = (isOddAddr == 0 && isOddByte == 0) ? (count>>1) : (count>>1)+1; //================================================================= unsigned int word_data; //Store word to be written int byte_wr = 0; //number of bytes written, i.e buffer pointer int i = 0; //================================================================= for(; i<max_write && word_offset<512; i++, word_offset++){ if(i==0 && isOddAddr){ //First byte not used //============================================save first byte readEEByte( __builtin_tblpage(eeData), __builtin_tbloffset(eeData) + byte_pointer - 1, &word_data); //=========================================================== word_data = ((unsigned int)buf[0] << 8) + (0xFF & word_data); byte_wr++; //Update buffer pointer byte_pointer++; //Update global pointer } else if(i==max_write-1 && ((isOddAddr && sOddByte==0)||(isOddAddr==0 && isOddByte))){ //Last byte not used //=============================================save last byte readEEByte( __builtin_tblpage(eeData), __builtin_tbloffset(eeData) + byte_pointer + 1, &word_data); //============================================================ word_data = (word_data << 8) + buf[byte_wr]; byte_wr++; //Update buffer pointer byte_pointer++; //Update global pointer } else{ //Both bytes valid word_data = ((unsigned int)buf[byte_wr+1] << 8) + buf[byte_wr]; byte_wr+=2; //Update buffer pointer byte_pointer+=2; //Update global pointer } //================================================================== eraseEEWord( __builtin_tblpage(eeData), __builtin_tbloffset(eeData) + 2*word_offset); writeEEWord( __builtin_tblpage(eeData), __builtin_tbloffset(eeData) + 2*word_offset, &word_data); //================================================================== } return byte_wr; //No. of byte written }
- eraseEEWord and writeEEWord are implemented in assembly.
.global _eraseEEWord _eraseEEWord: push TBLPAG mov w0, NVMADRU ;w0 = base of eeData mov w1, NVMADR ;w1 = offset for eeData in word mov #0x4044, w0 mov w0, NVMCON ;Set to erase operation push SR ;Disable global interrupts mov #0x00E0, w0 ior SR mov #0x55, w0 ;Write the KEY sequence mov w0, NVMKEY mov #0xAA, w0 mov w0, NVMKEY bset NVMCON, #15 ;Start the erase cycle, bit 15 = WR nop nop L1: btsc NVMCON, #15 ;while(NVMCONbits.WR) bra L1 clr w0 pop SR ;Enable global interrupts pop TBLPAG return
.global _writeEEWord _writeEEWord: push TBLPAG ;w0 = base of eeData mov w0, TBLPAG ;w1 = offset for eeData in byte tblwtl [w2], [w1] ;w2 = pointer to user buffer mov #0x4004, w0 ;Set to write operation MOV w0, NVMCON push SR ;Disable global interrupts mov #0x00E0, w0 ior SR mov #0x55, w0 ;Write the KEY sequence mov w0, NVMKEY mov #0xAA, w0 mov w0, NVMKEY bset NVMCON, #15 ;Start the erase cycle, bit 15 = WR nop nop L2: btsc NVMCON, #15 ;while(NVMCONbits.WR) bra L2 clr w0 pop SR ;Enable global interrupts pop TBLPAG return
Simple PWM (Output Compare Module)
- The PWM module consists of 8 channels using the output compare module of dsPic.
- These channels are locate at pin 46 (OC1), 49 (OC2), 50 (OC3), 51 (OC4), 52 (OC5), 53 (OC6), 54 (OC7), 55 (OC8). These pins are shared with port D.
- The range of PWM freqeuencies obtainable is 2Hz to 15MHz (See Figure 6.3). Suggested range of operation is 2Hz to 120kHz. The relationship between resolution r and PWM frequency fPWM is given by:
fPWM = fCY/(Prescale*10rlog(2))
Resolution (bit) | Prescale=1 | Prescale=8 | Prescale=64 | Prescale=256 |
---|---|---|---|---|
1 | 15,000,000 | 1,875,000 | 234,375 | 58,594 |
2 | 7,500,000 | 937,500 | 117,188 | 29,297 |
3 | 3,750,000 | 468,750 | 58,594 | 14,648 |
4 | 1,875,000 | 234,375 | 29,297 | 7,324 |
5 | 937,500 | 117,188 | 14,648 | 3,662 |
6 | 468,750 | 58,594 | 7,324 | 1,831 |
7 | 234,375 | 29,297 | 3,662 | 916 |
8 | 117,188 | 14,648 | 1,831 | 458 |
9 | 58,594 | 7,324 | 916 | 229 |
10 | 29,297 | 3,662 | 458 | 114 |
11 | 14,648 | 1,831 | 229 | 57 |
12 | 7,324 | 916 | 114 | 29 |
13 | 3,662 | 458 | 57 | 14 |
14 | 1,831 | 229 | 29 | 7 |
15 | 916 | 114 | 14 | 4 |
16 | 458 | 57 | 7 | 2 |
open()
- A timer (either Timer 2 or 3) is needed to determine the pwm period. The following code uses timer 2 for all 8 channels.
void pwm_open(void){ OC1CON = 0; OC2CON = 0; //Disable all output compare modules OC3CON = 0; OC4CON = 0; OC5CON = 0; OC6CON = 0; OC7CON = 0; OC8CON = 0; //============================================================ TMR2 = 0; // Clear register PR2 = 0xFFFF; // Set to Maximum //============================================================ _T2IP = 7; // Set priority level to 7 (7 Highest) _T2IF = 0; // Clear interrupt flag _T2IE = 1; // Enable interrupts //============================================================ T2CONbits.TCS = 0; // Use internal clock source T2CONbits.TCKPS = 0; // Prescale Select 1:1 //============================================================ T2CONbits.TON = 1; // Start the timer } void _ISR _T2Interrupt(void){ _T2IF = 0; // Clear interrupt flag }
ioctl()
- User should select the channel and set the pwm period using the functions below before issuing the duty cycle:
char pwm_ioctl(unsigned char request, unsigned long* argp){ unsigned int value; unsigned char mask; switch(request){ case PWM_SET_PERIOD: return setPeriodNPrescale(argp[0]); case PWM_SELECT_CH: pwm_channel = argp[0]; mask = 0x01 << pwm_channel; pwm_status = pwm_status | mask; return 0; default: return -1; } } char setPeriodNPrescale(unsigned long value_ns){ unsigned long ans; unsigned long long numerator = (unsigned long long)value_ns*SYSTEM_FREQ_MHZ; unsigned char index= -1; unsigned long denominator; //------------------------------------------------- do{ denominator = (unsigned long)1000*pwm_prescale[++index]; ans = (unsigned long)(((long double)numerator/denominator) + 0.5) - 1; //rounding to nearest integer } while(ans > 0x0000FFFF && index < 3); //------------------------------------------------- if(ans > 0x0000FFFF) return -1; //------------------------------------------------- T2CONbits.TON = 0; // Turn off the timer T2CONbits.TCKPS = index; // Change prescale factor PR2 = (unsigned int) ans; // Set to Maximum T2CONbits.TON = 1; // Turn on the timer //------------------------------------------------- return 0; }
write()
- User can change the duty cycle using teh following functions
int pwm_write(unsigned long* buf){ if((pwm_status & (0x01 << pwm_channel)) == 0){ return -1; //Channel has not been enabled } switch(pwm_channel){ case 0: OC1RS = calcDCycle(buf[0]); OC1R = OC1RS; OC1CONbits.OCM = 6; //Simple PWM, Fault pin disabled break; case 1: OC2RS = calcDCycle(buf[0]); OC2R = OC2RS; OC2CONbits.OCM = 6; //Simple PWM, Fault pin disabled break; ... case 7: OC8RS = calcDCycle(buf[0]); OC8R = OC8RS; OC8CONbits.OCM = 6; //Simple PWM, Fault pin disabled break; default: return -1; } return 4; } unsigned int calcDCycle(unsigned long value_ns){ unsigned long long numerator = (unsigned long long)value_ns*SYSTEM_FREQ_MHZ; unsigned int index = T2CONbits.TCKPS; unsigned long denominator = (unsigned long)1000*pwm_prescale[index]; return (unsigned int)(((long double)numerator/denominator) + 0.5) - 1; //rounding to nearest integer }
Propagration Delay
- PWM channels sharing the same timer will have their PWM signals synchronised (i.e. the HIGH state of the duty cycle are all triggered together).
- To introduced delay to the PWM signals, the signal from selected channels may be made to pass through a series of inverters (e.g. 74HC14D). This adds propagation delay to the signal.
- However, as propagration delay of logic gates depends on applied voltage, temperature and load capacitance, the accuracy is low and performance is poor. For accurate delay, delay lines may be used, but they are expensive.
3.3V | 5.0V | |||||
---|---|---|---|---|---|---|
Number of Gates | A | B | C | A | B | C |
2 | 21ns (10.5) | 23ns (11.5) | 22ns (11.0) | 15ns (7.5) | 14ns (7.0) | 14ns (7.0) |
4 | 45ns (11.3) | 46ns (11.5) | 46ns (11.5) | 30ns (7.5) | 30ns (7.5) | 30ns (7.5) |
6 | 69ns (11.5) | 70ns (11.7) | 72ns (12.0) | 45ns (7.5) | 46ns (7.7) | 47ns (7.8) |
[1] Data in specification for 4.5V: Typical 15ns, Maximum 25ns
[2] Data in specification for 6.0V: Typical 12ns, Maximum 21ns
DSP Library
- Library functions in <dsp.h> include the following categories:
- Vector
- Window
- Matrix
- Filtering
- Transform
- Control
Data Types
- Signed Fractional Value (1.15 data format)
- Inputs and outputs of the dsp functions adopt 1.15 data format, which consumes 16 bits to represent values between -1 to 1-2-15 inclusive.
- Bit<15> is a signed bit, positive = 0, negative = 1.
- Bit<14:0> are the exponent bits e.
- Positive value = 1 - 2-15*(32768 - e)
- Negative value = 0 - 2-15*(32768 - e)
- 40-bit Accumulator operations (9.31 data format)
- The dsp functions use the 40 bits accumalators during arithmatic calculations.
- Bit<39:31> are signed bits, positive = 0x000, negative = 0x1FF.
- Bit<30:0> are exponent bits.
- IEEE Floating Point Values
- Fractional values can be converted to Floating point values using: fo = Fract2Float(fr); for fr = [-1, 1-2-15]
- Floating point values can be converted to Fractional values using: fr = Float2Fract(fo); or fr = Q15(fo); for fo = [-1, 1-2-15]
- Float2Fract() is same as Q15(), except having saturation control. When +ve >= 1, answer = 215-1 = 32767 (0x7FFF). When -ve < -1, answer = -215 = -32767 (0x8000)
Overflow and Saturation Traps
- To be added.
Build-in Library
- Some assembler operators can only be accessed by inline assembly code, for example,
- Manuipulation of accumulators A and B (add, sub, mul, divide, shift, clear, square)
- Bit toggling
- Access to psv (program space visiblity) page and offset
- Access to table instruction page and offset
- Built-in functions are written as C-like function calls to utilize these assembler operators.
Bootloader Development
Concepts
- Programming with ICSP is useful when the target board is produced in batch. The producer can download a program even when the chip is on the target board.
- However, ICSP requires an external programmer.
- To allow the user to change the program after production but without the need of an external programmer, bootloader becomes useful.
- Bootloader is a small program installed via ICSP. Everytime the device is reset, the bootloader is run first. The bootloader first detects the default serial channel whether the user wishes to download a new program to the device. If so, the bootloader will pause there, and wait for the user to download the hex file from the PC. The hex file is written to the device via RTSP instructions in the bootloader. If a new download is not necessary, the bootloader redirects to the previously installed user's program.
- The disadvantage of bootloaders is that they consume some of the memory of the device.
Developer | Source | Platform | User Guide | Remarks |
---|---|---|---|---|
ingenia | Assembly | Windows |
| |
Tiny | Assembly | Windows | Web |
|
Elektronika | Hex | Windows | txt |
|
dsPicBootloader
- The bootloader developed by ingenia is open source and it has been modified (see below) to suit our development using dsPic30f5011.
- The bootloader (hereafter called dsPicBootloader) employs the following settings:
- Use U2ART channel
- Use FRC, PLL16
- For 5011, the bootloader is located between 0x00AE00 to 0x00AFFE (512bytes). Refer to C:\Program Files\Ingenia\ingeniadsPICbootloader\ibl_dspiclist.xml after installing the GUI interface.
- Changes made to assembly code includes:
1. including p30f5011.gld and p30f5011.inc
.include "p30f5011.inc"
2. changing the config code of UART #0x8420 -> #0x8020
; Uart init mov #0x8020, W0 ; W0 = 0x8020 -> 1000 0000 0010 0000b mov W0, U2MODE ; Enable UART, AutoBaud and 8N1 clr U2STA
3. changing the start address 0xAE00 - 0x0100 = 0AD00
.equ CRC, W4 .equ ACK, 0x55 .equ NACK, 0xFF .equ USER_ADDRESS, 0x0100 .equ START_ADDRESS, 0xAD00 ; Relative to 0x0100
4. using Internal FRC and PLL16
config __FOSC, CSW_FSCM_OFF & FRC_PLL16 ;Turn off clock switching and ;fail-safe clock monitoring and ;use the Internal Clock as the ;system clock
5. disabling MCLR (optional)
config __FBORPOR, PBOR_ON & BORV_27 & PWRT_16 & MCLR_DIS ;Set Brown-out Reset voltage and ;and set Power-up Timer to 16msecs
6. changing all the related registers of U1ART to U2ART, all U1XXX => U2XXX
U2MODE, U2STA, U2BRG, U2RXREG, U2TXREG
7. changing all the related registers of IC1 to IC2, all IC1XXX => IC2XXX
IC2CON, #IC2IF, #IC2IE
dsPicProgrammer (Java-based Multi-Platformed)
- Ingenia developed a programmer (PC-side) that works only in Windows environment. The project for Linux environment is currently suspended.
- A simple programmer (hereafter called dsPicProgrammer) written in Java based on the library developed by RXTX has been developed here. The programmer supports both Linux and Windows environments, and may be used as a substitution for the official programmer developed by ingenia.
- The programmer has the following specification and limitations:
- Adjustable baud rate.
- Only program dsPIC30F5011 and dsPIC33FJ128GP306 devices (Developers may add your devices in source code).
- Protection against overwriting bootloader codes on devices.
- Detection if application program does not have its reset() at user's code start address.
Special Consideration
- The bootloader assumes that the user program starts at address 0x100. This is usually the case, but there are always exceptions.
- To ensure that the user program always starts at address 0x100, you can create a customized linker script and customized reset() function as follows:
- Copy and modify the file named "crt0.s" from the directory "C:\Program Files\Microchip\MPLAB C30\src\pic30" to the project directory and include it.
.section .reset, code //previously .section .libc, code
- Copy and modify the linkerscript for the device (e.g. p30f5011.gld) to the project directory and include it.
.text __CODE_BASE : { *(.reset); //<-insert this line here *(.handle); *(.libc) *(.libm) *(.libdsp); /* keep together in this order */ *(.lib*); *(.text); } >program
Downloads
Program | Site 1 | Site 2 | Remarks |
---|---|---|---|
dsPicBootloader | click | click | Under "dsPicBootloader/", download ingenia.s and compile yourself |
dsPicProgrammer | click | click | Under "dsPicProgrammer/", dowload dsPicProgrammer.jar Alternatively, if you want to compile yourself or modify the source code, download COMDataHandler.java, COMPortManager.java, Pic5011Prog.java, Pic5011Protocol.java, and WriteBuffer.java under "dsPicProgrammer/" plus RdFileIntelHex.java under "IntelHexPaser/tags/0.02.00/". You should also install RXTX on your local machine as recommended in the readme file. |
Communication Protocol
- Communication Protocol is reviewed in ingenia bootloader user's guide section 2.1.3. The following summarises the key steps on the PC side (Refer also to section 2.2.2).
- Transmission is conducted in 8N1, i.e. 8-bit, no parity, 1 stop-bit
- Stage 1: User's configuation
- Select a baudrate
- Select a COM port channel
- Stage 2: Autobaud rate detection and version control
- Continuously sending a character "U" [0x55] via COM port
- Continuously waiting for an acknowledgment character "U", [ACK] = [0x55]
- Send command character [0x03]
- Receive 3 characters 1) Major Version 2) Minor Version 3) Acknowledgment [0x55]
- Prints the version number [Major.Minor] (e.g. 1.1) on screen.
- Stage 3: Loading and writing the program
- Load the user hex file, check integrity.
- Start loading file using:
- Read command character [0x01] + 24-bit address [High][Medium][Low]
- Receive 4-byte data [High][Medium][Low][ACK]
- Write command character [0x02] + 24-bit address [High][Medium][Low]+ Number of bytes [N] + [data 0] + [data 1] + ... + [data N-1] + [CRC]=(INTEL HEX8 Checksum - Sum modulo 256)
- Receive [ACK] or [NACK] = [0xFF]
- Note: Writing is in row mode access (i.e. erase and write a whole row, each row has 32 instructions, or 96 bytes because each instruction has 24 bits)
- Ensure the initial address of writing match an initial row position,
- Send the data corresponding to the whole row.
USB-RS232 Bridge
- As USB ports are becoming more and more common, COM ports and Parallel ports may be redundant in the next few years. This section explore the possibilities of programming the target board through a USB port.
- There are two options:
- Use an external USB/RS232 adaptor, the driver will emulate a virtual COM port, such as Prolific and FDTI. Ingenia has tested its bootloader with some USB-232 manufacturers (silabs, FTDI, etc..). However, the programming failed with our Prolific adapter. Application program may use JavaComm API (javax.comm) and/or RXTX to drive the COM port.
- Modified the bootloader program on PC to support USB communication. e.g. using jUSB and JSR-80 (javax.usb). External circuits such as PIC18F4550 and MAX232 are required.
|--User's App.--|-------Device Manager------|-------USB-RS232 Interface------|---dsPIC---| Option 1: +-------------+ +----------+ +----------+ +---+ +------------+ +-----+ +--------+ | Application |--| JavaComm |--| Virtual |==|USB|--| FDTI |--|RS232|==| Target | | Program | | RXTX | | COM Port | +---+ | Circuitary | +-----+ | Board | +-------------+ +----------+ +----------+ +------------+ +--------+ Option 2: +-------------+ +--------+ +---+ +------------+ +-----+ +--------+ | Application |----------| JSR-80 |==========|USB|--| PIC18F4550 |--|RS232|==| Target | | Program | | jUSB | +---+ | MAX232 | +-----+ | Board | +-------------+ +--------+ +------------+ +--------+
- Currently, when RXTX is incorporated with JavaComm API, operating systems supported include Linux, Windows, Mac OS, Solaris and other operating systems. On the other hand, jUSB and JSR-80 only works for linux.
FDTI Chipset
- FT232RL communicates with PC via USB to provide 1 UART channel.
- Datasheet can be downloaded here.
- Refer to Fig. 11 (Page 19) for Bus Powered Configuration.
- Refer to Fig. 16 (Page 24) for for UART TTL-level Receive [RXD -> 1], Transmit [TXD -> 4], Transmit Enable [CBUS2/TXDEN -> 3]. Omit Receive Enable [CBUS3/PWREN#] and use [CBUS2/TXDEN -> 2]
- Refer to Fig. 15 (Page 23) for LED Configuration: [CBUS0/TXLED#] and [CBUS1/RXLED#]
- Virtual COM Port Drivers can be downloaded here.
Programming the Device
Requirements
- Hardware
- PC with COM port (Windows XP Installed for MPLAB)
- ICD2 Programmer
- Target Board
- 5V Power Supply
- Software
- MPLAB IDE v7.50 or higher
- dsPicProgrammer (dsPicProgrammer.jar)
- RXTX driver
- Files
- dsPicBootloader (ingenia.hex). Original assembly code by ingenia can be downloaded from here.
- Application hex file (e.g. app.hex)
Loading Bootloader (Once only)
Step | Remarks |
---|---|
Install MPLAB IDE |
|
Install USB Driver |
|
Select Target Chip |
|
Target <-> ICD 2 |
|
ICD 2 <-> PC |
|
Load Bootloader |
|
Start Programming |
|
Finishing |
|
Loading Application
Step | Remarks |
---|---|
Install RXTX |
|
Connect target board |
|
Open a console window |
|
Start Programming |
|
Finishing |
|
Remote Access
- At the moment, local devices (e.g. EEPROM, ADC, DAC, etc.) can only be accessed locally through POSIX functions such as open(), read(), write(), ioctl().
- However, a client may need to access these devices on a remote server. This section reviews the background and gives some ideas on its possible implementation.
Requirements
- A remote file access protocol, to transfer "files" (i.e. device's data) such as:
- File Transfer Protocol (FTP): Required files are copied from sever to client for manipulation
- Remote Shell (RSH): Required files are copied from sever to client for manipulation
- Network File System (NFS): Required files are manipulated on sever
- An API to access files using a selected protocol, such as:
- lam_rfposix: A POSIX-like remote file service for Local Area Multicomputer
- API employed by VxWorks: VxWorks is a Unix-like real-time operating system, commonly used for embedded systems.
API Reference for VxWorks
- Reference:
- Related Libraies
- netDrv (netDrv.h): an API using FTP or RSH
- nfsDrv (nfsDrv.h): an API using NFS
Conversion to dsPIC33F Devices (Not Tested)
- This section discusses the conversion required from dsPIC30F5011 to dsPIC33FJ128GP306.
- Refer to official document dsPIC30F to dsPIC33F Conversion Guidelines (DS70172A).
- Note that this section does not intend to introduce the new functionalities of dsPIC33F devices. It only serves the purpose to summarise the major (if not minimum) changes required to port the setup of dsPIC30 to dsPIC33 devices.
Hardware
- dsPIC33 operates at voltage of 3.3V. A voltage regulator, such as LM3940 can be used to convert 5V supply to 3.3V.
- A 1uF capacitor has to be placed at pin 56 (previously VSS, now VDDCORE).
Software
Configuration Bits
- dsPIC33 can operate at 40MIPs at maximum. To configure the device using internal FRC, replace the configuration bits setting as follows:
_FOSCSEL(FNOSC_FRCPLL); // FRC Oscillator with PLL _FOSC(FCKSM_CSDCMD & OSCIOFNC_OFF & POSCMD_NONE); // Clock Switching and Fail Safe Clock Monitor is disabled // OSC2 Pin Function: OSC2 is Clock Output // Primary Oscillator Mode: Disabled _FWDT(FWDTEN_OFF); // Watchdog Timer Enabled/disabled by user software
- Configure on-chip PLL at runtime as follows (at start of main function):
_PLLDIV = 38; // M=40: PLL Feedback Divisor bits _PLLPOST1 = 0; _PLLPOST0 = 0; // N1=2: PLL VCO Output Divider Select bits _PLLPRE4 = 0; _PLLPRE3 = 0; // N2=2: PLL Phase Detector Input Divider bits _PLLPRE2 = 0; _PLLPRE1 = 0; _PLLPRE0 = 0; OSCTUN = 0; // Tune FRC oscillator, if FRC is used; // 0: Center frequency (7.37 MHz nominal) // 22: +8.25% (7.98 MHz) RCONbits.SWDTEN = 0; // Disable Watch Dog Timer while(OSCCONbits.LOCK != 1); // Wait for PLL to lock
UART
- No change is required.
I2C
- dsPIC33 supports upto 2 I2C devices. As a result, replace all I2C related registers with xxI2Cyy to xxI2C1yy. For examples:
_SI2C1IF = 0; //Clear Slave interrupt _MI2C1IF = 0; //Clear Master interrupt _SI2C1IE = 0; //Disable Slave interrupt _MI2C1IE = 0; //Disable Master interrupt I2C1BRG = I2C_BRG; // Configure Baud rate I2C1CONbits.I2CEN = 1; ... etc.
ADC
- There are upto 2 configurations of the ADC module. Replace all ADC-related registers ADxxx to AD1xxx. For examples:
volatile unsigned int* ADC16Ptr = &ADC1BUF0; AD1CHS0bits.CH0NA = 0; AD1CON3bits.SAMC = 1; //1TAD for sampling time AD1CON2bits.VCFG = 3; //External Vref+, Vref- AD1CON1bits.ADON = 1; //Turn on module ... etc.
- Set ADC to use 12-bit modes:
AD1CON1bits.AD12B = 1; //12-bit, 1-channel ADC operation
- dsPIC33 have upto 32 ADC channels. The configurations for each channel is therefore splited into 2 registers (High controls channels 16-31; Low controls channels 0-15).
//=========================================================================== // Configure analog i/o _TRISB0 = 1; _TRISB1 = 1; AD1PCFGL = 0xFFFC; //AN0-AN15: Enable AN0 (Vref+) and AN1 (Vref-) AD1PCFGH = 0xFFFF; //AN16-AN31: Disabled //=========================================================================== // Configure scan input channels AD1CSSL = 0x0003; //AN0-AN15: 0 => Skip, 1 => Scan AD1CSSH = 0x0000; //Skipping AN16-AN31
EEPROM
- There is no EEPROM in dsPIC33 devices. Please consider to use an external EEPROM using I2C communication.
Simple PWM
- No change is required.
Memory Map for dsPIC33FJ128GP306
Type | Start Address | End Address | Size |
---|---|---|---|
Flash | 0x000000 | 0x0157FF | 86K[1] |
+--Flash: Reset Vector | 0x000000 | 0x000003 | 4 |
+--Flash: Interrupt Vector Table | 0x000004 | 0x0000FF | 252 |
+--Flash: Alternate Vector Table | 0x000104 | 0x0001FF | 252 |
+--Flash: User Program | 0x000200 | 0x0157FF | 85.5K |
Programming Executive | 0x800000 | 0x800FFF | 4K[1] |
Config Registers | 0xF80000 | 0xF80017 | 24 |
Device ID (0xCF) | 0xFF0000 | 0xFF0003 | 4 |
[1] Each address is 16-bit wide. Every two addresses correspond to a 24-bit instruction. Each even address contains 2 valid bytes; each odd address contains 1 valid byte plus 1 phathom byte.
dsPicBootloader and dsPicProgrammer
- RTSP for dsPIC33F is different from dsPIC30F.
- Row size changes 32 instructions (96bytes) to 64 instructions (192 bytes)
- Erase operation changes from 1 row to 8 rows
- No EEPROM
- With regards to the above changes, dsPicBootloader and dsPicProgrammer has been modified. In particular, dsPicProgrammer can be used to program both dsPic30F and dsPic33F devices. You can easily add your devices to the source code.
Downloads
Program | Site 1 | Site 2 | Remarks |
---|---|---|---|
dsPicBootloader | [click] | [click] | Under "dsPicBootloader/", download bl_5011.s or bl_j128gp306.s |
dsPicProgrammer | [click] | [click] | Under "dsPicProgrammer/", dowload dsPicProgrammer.jar Alternatively, if you want to compile yourself or modify the source code, download all source files under "dsPicProgrammer/" plus RdFileIntelHex.java under "IntelHexPaser/tags/0.02.00/". You should also install RXTX on your local machine as recommended in the readme file. |
To Do List
- Construct examples codes for using DSP library
- Construct examples codes for using Build-in library
- GUI Interface for Benchtop boards